Infrared and Laser Engineering, Volume. 50, Issue 11, 20210551(2021)

Design of transceiver separation structure for orthogonal cascaded liquid crystal polarization gratings

Zhuang Liu1...2, Qidong Wang2, Haodong Shi1, Chao Wang1 and Huan Qin3 |Show fewer author(s)
Author Affiliations
  • 1Institute of Space Photo-electronics Technology, Changchun University of Science and Technology, Changchun 130022, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 3College of Optoelectronics Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(15)
    Structure of LCPG
    Diffraction properties of passive LCPG: (a) Incident light is right-handed circular polarization; (b) Incident light is left-handed circular polarization
    Passive LCPG layer with two LC-AHWPs and two LCPGs
    Beam transceiver separation structure using OC-LCPGS
    Experimental diagram of OC-LCPGs receiving and transmitting separation structure verification
    Diffraction efficiency of different LCPG at different angles
    Diffraction efficiency of LCPG with mirror symmetry at different angles
    • Table 1. Control coefficient and polarization state change at different angles

      View table
      View in Article

      Table 1. Control coefficient and polarization state change at different angles

      Modulation angle/(°)Polarization state of incident lightPhase delay of AHWP1Polarization state after AHWP1Polarization state after LCPG1Phase delay of AHWP2Polarization state after AHWP2Polarization state after LCPG2
      2θRCPL0RCPLLCPLπRCPLLCPL
      00RCPLLCPL0LCPLRCPL
      −2θπLCPLRCPLπLCPLRCPL
      2θLCPLπRCPLLCPLπRCPLLCPL
      00LCPLRCPL0RCPLLCPL
      −2θ0LCPLRCPLπLCPLRCPL
    • Table 2. Control coefficient and polarization state change at different angles reverse light path

      View table
      View in Article

      Table 2. Control coefficient and polarization state change at different angles reverse light path

      Modulation angle/(°)Polarization state before LCPG2Polarization state before AHWP2Phase delay of AHWP2Polarization state before LCPG1Polarization state before AHWP1Phase delay of AHWP1Polarization state before AHWP1
      2θRCPLLCPLπRCPLLCPL0LCPL
      0LCPLRCPL0RCPLLCPL0LCPL
      −2θLCPLRCPLπLCPLRCPLπLCPL
      2θRCPLLCPLπRCPLLCPLπRCPL
      0RCPLLCPL0LCPLRCPL0RCPL
      −2θLCPLRCPLπLCPLRCPL0RCPL
    • Table 3. Control parameters of AHWP in each layer

      View table
      View in Article

      Table 3. Control parameters of AHWP in each layer

      Realization angle0°(MD 1.25° layer)−1.25°(SD 1.25° layer)
      Wave plate serial number0.625°0.625°0.625°0.625°
      Control coefficient0011
      Realization angle2.5°(MD 2.5° layer)2.5°(SD 2.5° layer)
      Wave plate serial number1.25°1.25°1.25°1.25°
      Control coefficient0100
      Realization angle0°(MD 5.0° layer)−5°(SD 5.0° layer)
      Wave plate serial number2.5°2.5°2.5°2.5°
      Control coefficient0001
      Realization angle0°(MD 10.0° layer)−10°(SD 10.0° layer)
      Wave plate serial number5.0°5.0°5.0°5.0°
      Control coefficient0011
      Realization angle20°(MD 20.0° layer)0°(SD 20.0° layer)
      Wave plate serial number10.0°10.0°10.0°10.0°
      Control coefficient0100
    • Table 4. Polarization states before and after each element of OC-LCPGS

      View table
      View in Article

      Table 4. Polarization states before and after each element of OC-LCPGS

      LayerMD 1.25° layer SD 1.25° layer MD 2.5° layer SD 2.5° layer MD 5.0° layer SD 5.0° layer MD 10.0° layer SD 10.0° layer MD 20.0° layer SD 20.0° layer
      Realization angle/(°)0−1.252.52.50−50−10200
      Polarization state after layerRCPLRCPLLCPLLCPLLCPLRCPLRCPLRCPLLCPLLCPL
    • Table 5. Polarization states before and after each element of OC-LCPGS under the condition of reverse incidence

      View table
      View in Article

      Table 5. Polarization states before and after each element of OC-LCPGS under the condition of reverse incidence

      LayerSD 20.0° layer MD 20.0° layer SD 10.0° layer MD 10.0° layer SD 5.0° layer MD 5.0° layer SD 2.5° layer MD 2.5° layer SD 1.25° layer MD 1.25° layer
      Realization angle/(°)0−2010050−2.5−2.51.250
      Polarization state after layerLCPLRCPLRCPLRCPLRCPLLCPLLCPLLCPLRCPLLCPL
    • Table 6. Composition and index of test system

      View table
      View in Article

      Table 6. Composition and index of test system

      ComponentParameterValue
      Laser 1Wavelength/nm630
      Optical power/mW3.20
      Laser 2Wavelength/nm630
      Optical power/mW1.50
      PBSTransmittanceP:96%; S:94%
      QWPTransmittance96%
      HWPTransmittance96%
      GratingLinear density of grating 1/lp·mm−1159
      Linear density of grating 2/lp·mm−1159
      Linear density of grating 3/lp·mm−1286
      Linear density of grating 4/lp·mm−1286
      TransmittanceAs shown in Fig.6
      Thickness/mm0.45±0.04
      MaterialD263
    • Table 7. Transmittance at different modulation angles

      View table
      View in Article

      Table 7. Transmittance at different modulation angles

      Main order angle/(°)Transmittance of 1st measurement of S light Transmittance of 2nd measurement of S light Transmittance of 3rd measurement of S light Average transmittance of S lightAverage transmittance of P light
      081%82%81%81%<1%
      1061%61%61%61%<1%
      −1061%61%61%61%<1%
      2052%50%53%52%<1%
      −2050%50%51%50%<1%
      3041%39%40%40%<1%
      −3036%37%36%36%<1%
    • Table 8. Incident angle at different modulation angles

      View table
      View in Article

      Table 8. Incident angle at different modulation angles

      Main order angle/(°) Incident angle of LCPG1/(°) Incident angle of LCPG2/(°) Incident angle of LCPG3/(°) Incident angle of LCPG4/(°)
      005010
      1005100
      −100−5−100
      2005010
      −20050−10
      30051020
      −300−5−1020
    Tools

    Get Citation

    Copy Citation Text

    Zhuang Liu, Qidong Wang, Haodong Shi, Chao Wang, Huan Qin. Design of transceiver separation structure for orthogonal cascaded liquid crystal polarization gratings[J]. Infrared and Laser Engineering, 2021, 50(11): 20210551

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical design

    Received: Aug. 6, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20210551

    Topics