Acta Optica Sinica, Volume. 43, Issue 21, 2124001(2023)

Design, Preparation, and Properties of Gold Grating/Nanoparticles SERS Substrate

Chunfang Wu1、*, Yan Zhang1, Hao Pan1, Yechuan Zhu1, Zhanjun Yang2, and Jie Wei3
Author Affiliations
  • 1School of Opto-Electronical Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi , China
  • 2Northwest Branch, China Datang Corporation Science and Technology General Research Institute Co., Ltd., Xi'an 710018, Shaanxi , China
  • 3School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi , China
  • show less
    References(36)

    [1] Reilly T H, Chang S H, Corbman J D et al. Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays[J]. The Journal of Physical Chemistry C, 111, 1689-1694(2007).

    [2] Kleinman S L, Frontiera R R, Henry A I et al. Creating, characterizing, and controlling chemistry with SERS hot spots[J]. Physical Chemistry Chemical Physics, 15, 21-36(2013).

    [3] Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie (International Ed. in English), 53, 4756-4795(2014).

    [4] Wu C F, Cai C L, Yang P F et al. An atom-induced situ-growth method for constructing a highly sensitive and reproducible large area SERS substrate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 205-211(2018).

    [5] Wang X T, Shi W S, She G W et al. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures[J]. Physical Chemistry Chemical Physics, 14, 5891-5901(2012).

    [6] Wang X T, Guo L. SERS activity of semiconductors: crystalline and amorphous nanomaterials[J]. Angewandte Chemie (International Ed. in English), 59, 4231-4239(2020).

    [7] Kanipe K N, Chidester P P F, Stucky G D et al. Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity[J]. ACS Nano, 10, 7566-7571(2016).

    [8] Zhang C, Jiang S Z, Yang C et al. Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS[J]. Scientific Reports, 6, 25243(2016).

    [9] Lin D D, Wu Z L, Li S J et al. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy[J]. ACS Nano, 11, 1478-1487(2017).

    [10] Wu C F, Zhou X, Wei J. Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction[J]. Nanoscale Research Letters, 10, 354(2015).

    [11] Li J R, Zhang G N, Wang J et al. Facile one-pot synthesis of nanodot-decorated gold-silver alloy nanoboxes for single-particle surface-enhanced Raman scattering activity[J]. ACS Applied Materials & Interfaces, 10, 32526-32535(2018).

    [12] Fu G D, Sun D W, Pu H B et al. Fabrication of gold nanorods for SERS detection of thiabendazole in apple[J]. Talanta, 195, 841-849(2019).

    [13] Amin M U, Zhang L L, Hao R et al. Electrochemical growth of dendritic silver nanostructures as facile SERS substrates[J]. CrystEngComm, 23, 694-699(2021).

    [14] Camden J P, Dieringer J A, Zhao J et al. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing[J]. Accounts of Chemical Research, 41, 1653-1661(2008).

    [15] Huang Y, Zhang X, Ringe E et al. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays[J]. Nanoscale, 10, 4267-4275(2018).

    [16] Sha H Y, Wang Z K, Zhang J E. SiO2 microsphere array coated by Ag nanoparticles as Raman enhancement sensor with high sensitivity and high stability[J]. Sensors, 22, 4595(2022).

    [17] Wang Z K, Sha H Y, Yang K et al. Self-assembled monolayer silver nanoparticles: Fano resonance and SERS application[J]. Optics & Laser Technology, 157, 108771(2023).

    [18] Chu Y Z, Crozier K B. Experimental study of the interaction between localized and propagating surface plasmons[J]. Optics Letters, 34, 244-246(2009).

    [19] Gillibert R, Sarkar M, Bryche J F et al. Directional surface enhanced Raman scattering on gold nano-gratings[J]. Nanotechnology, 27, 115202(2016).

    [20] Kalachyova Y, Mares D, Jerabek V et al. Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles[J]. Physical Chemistry Chemical Physics, 19, 14761-14769(2017).

    [21] Lequeux M, Mele D, Venugopalan P et al. Plasmonic properties of gold nanostructures on gold film[J]. Plasmonics, 15, 1653-1660(2020).

    [22] Du L P, Zhang X J, Mei T et al. Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS[J]. Optics Express, 18, 1959-1965(2010).

    [23] Chu Y Z, Wang D X, Zhu W Q et al. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model[J]. Optics Express, 19, 14919-14928(2011).

    [24] Abdulhalim I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement[J]. Nanophotonics, 7, 1891-1916(2018).

    [25] Fu Q A, Zhang D G, Chen Y K et al. Surface enhanced Raman scattering arising from plasmonic interaction between silver nano-cubes and a silver grating[J]. Applied Physics Letters, 103, 041122(2013).

    [26] Zhou Y, Li X H, Ren X G et al. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy[J]. Analyst, 139, 4799-4805(2014).

    [27] Kalachyova Y, Mares D, Jerabek V et al. The effect of silver grating and nanoparticles grafting for LSP–SPP coupling and SERS response intensification[J]. The Journal of Physical Chemistry C, 120, 10569-10577(2016).

    [28] Abutoama M, Li S Z, Abdulhalim I. Widening the spectral range of ultrahigh field enhancement by efficient coupling of localized to extended plasmons and cavity resonances in grating geometry[J]. The Journal of Physical Chemistry C, 121, 27612-27623(2017).

    [29] Wang X X, Wu Y, Wen X L et al. Composite structure of Au film/PMMA grating coated with Au nanocubes for SERS substrate[J]. Optical Materials, 121, 111536(2021).

    [30] Feng K, Chen Z Y, Chen Z B et al. Composite structure of Ag colloidal particles and Au sinusoidal nanograting with large-scale ultra-high field enhancement for SERS detection[J]. Photonics, 8, 415(2021).

    [31] Chen Z Y, Feng K, Chen Z B et al. The impact of LSP-SPP coupling on the electric field enhancement of a composite SERS substrate consisting of an Au 2D sinusoidal grating and Ag colloidal nanoparticles[J]. Optics Communications, 508, 127797(2022).

    [32] Wu C F, Pan H, Zhu Y C. Electric field enhancement for hybrid structure containing silver grating and silver nanoparticles[J]. Chinese Journal of Lasers, 49, 0608003(2022).

    [33] Wu C F, Duan P F, Pan H et al. A double resonant SERS substrate with grating/nanoparticle structure[J]. Acta Optica Sinica, 42, 1405002(2022).

    [34] Palik E D. Handbook of optical constants of solids II[M](1991).

    [35] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [36] Balci S, Karademir E, Kocabas C. Strong coupling between localized and propagating plasmon polaritons[J]. Optics Letters, 40, 3177-3180(2015).

    Tools

    Get Citation

    Copy Citation Text

    Chunfang Wu, Yan Zhang, Hao Pan, Yechuan Zhu, Zhanjun Yang, Jie Wei. Design, Preparation, and Properties of Gold Grating/Nanoparticles SERS Substrate[J]. Acta Optica Sinica, 2023, 43(21): 2124001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Apr. 24, 2023

    Accepted: May. 31, 2023

    Published Online: Nov. 8, 2023

    The Author Email: Wu Chunfang (wuchf@xatu.edu.cn)

    DOI:10.3788/AOS230867

    Topics