Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 2024(2022)

Research Progress on Semiconductor Composites in Photocatalytic Reduction of CO2

JIANG Haiyang1、* and LIU Huiling2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(135)

    [3] [3] SUN Z, TALREJA N, TAO H, et al. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges[J]. Angew Chem Nat Ed, 2018, 57(26): 7610-7627.

    [4] [4] LI X, YU J. Water splitting by photocatalytic reduction[M]//COLMENARES J C, XU Y-J, eds. Heterogeneous Photocatalysis. Berlin Heidelberg: Springer-Verlag, 2016: 175-210.

    [5] [5] MAO J, LI K, PENG T. Recent advances in the photocatalytic CO2 reduction over semiconductors[J]. Catal Sci Technol, 2013, 3(10): 2481-2498.

    [6] [6] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277: 637-638.

    [8] [8] BIRDJA Y, PREZ-GALLENT E, FIGUEIREDO M, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nat Energy, 2019, 4(9): 732-745.

    [9] [9] HALMANN M. Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium phosphide in liquid junction solar cells[J]. Nature, 1978, 275 (5676): 115-116.

    [10] [10] EGGINS B R, IRVINE J T R, MURPHY E P, et al. Formation of 2-carbon acids from carbon-dioxide by photoreduction on cadmiumsulfide[J]. J Chem Soc Chem Commun, 1988(16): 1123-1124.

    [11] [11] MATSUMOTO Y, OBATA M, HOMBO J. Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder[J]. J Phys Chem, 1994, 98(11): 2950-2951.

    [12] [12] ANPO M, YAMASHITA H, ICHIHASHI Y. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts[J]. J Electroanal Chem, 1995, 396(1): 21-26.

    [14] [14] LIU Y Y, HUANG B B, DAI Y, et al. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst[J]. Catal Commun, 2009, 11(3): 210-213.

    [15] [15] SCHULTE K, DESARIO P, GRAY K. Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light[J]. Appl Catal B Environ, 2010, 97(3/4): 354-360.

    [17] [17] TERAMURA K, OKUOKA S I, TSUNEOKA H, et al. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A=Li, Na, K)[J]. Appl Catal B Environ, 2010, 96(3/4): 565-568.

    [18] [18] SHI H F, WANG T Z, CHEN J, et al. Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts[J]. Catal Lett, 2011,141(4): 525-530.

    [19] [19] SHI H F, ZOU Z G. Photophysical and photocatalytic properties of ANbO3(A=Na, K) photocatalysts[J]. J Phys Chem Solids, 2012, 73(6): 788-792.

    [20] [20] ZHOU Y, TIAN Z P, ZHAO Z Y, et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light[J]. ACS Appl Mater Inter, 2011, 3(9): 3594-3601.

    [21] [21] CHENG H F, HUANG B B, LIU Y Y, et al. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol[J]. Chem Commun, 2012, 48(78): 9729-9731.

    [22] [22] MAO J, PENG T Y, ZHANG X H, et al. Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation[J]. Catal Commun, 2012, 28: 38-41.

    [23] [23] WANG P Q, BAI Y, LIU J Y, et al. One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catal Commun, 2012, 29: 185-188.

    [24] [24] CHEN X Y, ZHOU Y, LIU Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light[J]. ACS Appl Mater Inter, 2012, 4(7): 3372-3377.

    [27] [27] FRESNO F, JANA P, REONES P, et al. CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts[J]. Photoch Photobio Sci, 2017, 16(1): 17-23.

    [28] [28] XIAO J, YANG WY, GAO S, et al. Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination[J]. J Mater Sci Technol, 2018, 34(12): 2331-2336.

    [29] [29] XIA W, WU J, HU J C, et al. Highly efficient photocatalytic conversion of CO2 to CO catalyzed by surface-ligand-removed and Cd-rich CdSe quantum dots[J]. ChemSusChen, 2019, 12(20): 4617-4622.

    [30] [30] LI J, YE Y H, YE L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x[J]. J Mater Chem A, 2019, 7(6): 2821-2830.

    [34] [34] RIBEIRO C S, TAN J Z Y, MAROTO-VALER M, et al. Photocatalytic reduction of CO2 over Bi2WO6 in a continuous flow differential photoreactor: Investigation of operational parameters[J]. J Environ Chem Eng, 2021, 9(2): 105097.

    [37] [37] CHANDRABOSS V L, KAMALAKKANNAN J, SENTHILVELAN S. Synthesis of activated charcoal supported bidoped TiO2 nanocomposite under solar light irradiation for enhanced photocatalytic activity[J]. Appl Surf Sci, 2016, 387: 944-956.

    [40] [40] TSENG I H, WU J C S. Chemical states of metal-loaded titania in the photoreduction of CO2[J]. Catal Today, 2004, 97(2): 113-119.

    [41] [41] SLAMET, NASUTION H W, PURNAMA E, et al. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method[J]. Catal Commun, 2005, 6(5): 313-319.

    [42] [42] ZHANG Q H, HAN W D, HONG Y J, et al. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst[J]. Catal Today, 2009, 148(3): 335-340.

    [44] [44] YUI T, KAN A, SAITOH C, et al. Photochemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2[J]. ACS Appl Mater Inter, 2011, 3(7): 2594-2600.

    [45] [45] HOU W B, HUNG W H, PAVASKAR P, et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via Plasmon-enhanced absorption and metallic interband transitions[J]. ACS Catal, 2011, 1(8): 929-936.

    [47] [47] TAN JZY, FERNNDEZ Y, LIU D, et al. Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior[J]. Chem Phys Lett, 2012, 531: 149-154.

    [48] [48] LIU D, FERNNDEZ Y, OLA O, et al. On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2[J]. Catal Commun, 2012, 25: 78-82.

    [49] [49] WANG W N, AN W J, RAMALI-NGAM B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by sizeresolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. J Am Chem Soc, 2012, 134(27): 11276-11281.

    [50] [50] OLA O, LIU D, MACKINTOSH S. Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation[J]. Appl Catal B-Environ, 2012, 126(25): 172-179.

    [51] [51] MAO J, YE L Q, LI K, et al. Ptloading reverses the photocatalytic activity order of anatase TiO2 {001} and {010} facets for photoreduction of CO2 to CH4[J]. Appl Catal B-Environ, 2014, 144, 855-862.

    [52] [52] MANZANARES M, FBREGA C, OSS J O, et al. Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction[J]. Appl Catal B-Environ, 2014, 150-151: 57-62.

    [53] [53] LI K, PENG TY, YING ZH, et al. Ag-loading on brookite TiO2 quasi nanocubes with exposed {210}and{001}facets: Activity and selectivity of CO2 photoreduction to CO/CH4[J]. Appl Catal B-Environ, 2016, 180, 130-138.

    [54] [54] KOMETANI N, HIRATA S, CHIKADA M. Photocatalytic reduction of CO2 by Pt-loaded TiO2 in the mixture of sub- and supercritical water and CO2[J]. J Supercrit Fluid, 2017, 120: 443-447.

    [55] [55] XU CY, HUANG WH, LI Z, et al. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2[J]. ACS Catal, 2018, 8(7): 6582-6593.

    [57] [57] YU F, WANG C, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale, 2020, 12(13): 7000-7010.

    [59] [59] MAHA A, AHMED S. Pt-decorated ZnMn2O4 nanorods for effective photocatalytic reduction of CO2 into methanol under visible light[J]. Ceram Int, 2020, 47(7): 9763-9770.

    [60] [60] YI L, WU X Y, WU X Y, et al. Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air[J]. Sci China Mater, 2020, 63(11): 2206-2214.

    [61] [61] WAN Z Y, WANG J, WANG K. Photocatalytic reduction of CO2 with H2O vapor into solar fuels over Ni modified porous In2O3 nanosheets[J]. Catal Today, 2021, (374): 44-52.

    [65] [65] SUI D D, YIN X H, DONG H Z, et al. Photocatalytically reducing CO2 to methyl formate in methanol over Ag loaded SrTiO3 nanocrystal catalysts[J]. Catal Lett, 2012, 142: 1202-1210.

    [67] [67] LI P, OUYANG S X, XI G C, et al. The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3[J]. J Phys Chem C, 2012, 116(14): 7621-7628.

    [68] [68] LI D W, OUYANG S X, XU H, et al. Synergistic effect of Au and Rh over SrTiO3 on significantly promoting visible-light-driven syngas production from CO2 and H2O[J]. Chem Commun, 2016, 52(35): 5989-5992.

    [78] [78] FAN J, LIU E Z, TIAN L, et al. Study on synergistic effect of N and Ni2+ on nanotitania in photocatalytic reduction of CO2[J]. J Environ Eng, 2011, 137(3): 171-176.

    [79] [79] PENG H J, ZHENG P Q, QIAO Z P, et al. CdSe/ZIF-8-x: Synthesis and photocatalytic CO2 reduction performance[J]. RSC Adv, 2020, 10(1): 551-555.

    [80] [80] XU M, WU H, TANG Y W, et al. One-step in situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J]. Micropor Mesopor Mat, 2020, 309: 110539.

    [81] [81] CHEN X Y, YE X Z, HE J X, et al. Preparation of Fe3+-doped TiO2 aerogels for photocatalytic reduction of CO2 to methanol[J]. J Sol-Gel Sci Techn, 2020, 95(2): 353-359.

    [83] [83] NAKAMURA R, TANAKA T, NAKATO Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes[J]. J Phys Chem B, 2004, 108(30): 10617-10620.

    [84] [84] CHEN X, BURDA C. The electronic origin of the visiblelight absorption properties of C-, N- and S-doped TiO2 nanomaterials[J]. J Am Chem Soc, 2008, 130(15): 1018-1019.

    [87] [87] HUSSAIN S T, KHAN K, HUSSAIN R. Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2+H2O conversion and phenol degradation[J]. J Nat Gas Chem, 2009, 18(4): 383-391.

    [89] [89] ZHANG Q Y, LI Y, ACKERMAN E A, et al. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels[J]. Appl Catal A-Gen, 2011, 400(1/2): 195-202.

    [91] [91] ZHAO Z H, FAN J M, WANG J Y, et al. Effect of heating temperature on photocatalytic reduction of CO2 by N-TiO2 nanotube catalyst[J]. Catal Commun, 2012, 21: 32-37.

    [92] [92] YU L, BA X, QIU M, et al. Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods[J]. Nano Energy, 2019, 60: 576-582.

    [96] [96] VARGHESE O K, PAULOSE M M, LATEMPA T J, et al. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels[J]. Nano Lett, 2009, 9(2): 731-737.

    [97] [97] LI X K, ZHANG Z J, LI W, et al. Photocatalytic reduction of CO2 over noble metl-loaded and nitrogen-doped mesoporous TiO2[J]. Appl Catal A-Gen, 2012, 429-430: 31-38.

    [98] [98] LI X K, ZHANG Z J, LI W, et al. Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor[J]. Appl Catal A-Gen, 2012, 123-124: 257-264.

    [99] [99] WANG X Y, ZHANG Z G, HUANG Z F, et al. Synergistic effect of N-Ho on photocatalytic CO2 reduction for N/Ho Co-doped TiO2 nanorods[J]. Mater Res Bull, 2019, 118: 110502.

    [100] [100] ZHU S, CHEN X F, LIi Z C, et al. Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction[J]. Appl Catal B-Environ, 2020, 264: 118515.

    [101] [101] LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem Rev, 1995, 95: 735-758.

    [104] [104] SLAMET, NASUTION H W, PURNAMA E, et al. Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method[J]. Catal Commun, 2005, 6(5): 313-319.

    [106] [106] PAN P W, CHEN Y W. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation[J]. Catal Commun, 2007, 8: 1546-1549.

    [107] [107] ZHAO Z H, FAN J M, XIE M M, et al. Photocatalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation[J]. J Clean Prod, 2009, 17(11): 1025-1029.

    [108] [108] YAN S C, OUYANG S X, GAO J, et al. A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2[J]. Angew Chem Int Edit, 2010, 49: 6400-6404.

    [109] [109] QIN S Y, XIN F, LIU Y D, et al. Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts[J]. J Colloid Interf Sci, 2011, 356(1): 257-261.

    [110] [110] XI G, OUYANG S, YE J. General synthesis of hybrid TiO2 mesoporous “french fries” toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: A case of TiO2/ZnO[J]. Chem-Eur J, 2011, 17(33): 9057-9061.

    [111] [111] LI X, CHEN J T, LI H L, et al. Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation[J]. J Nat Gas Chem, 2011, 20(4): 413-417.

    [112] [112] ASI M A, HE C, SU M H, et al. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light[J]. Catal Today, 2011, 175(1): 256-263.

    [113] [113] LI H L, LEI Y G, HUANG Y, et al. Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation[J]. J Nat Gas Chem, 2011, 20(2): 145-150.

    [114] [114] ZHANG N, OUYANG S X, KAKO T, et al. Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light[J]. Chem Commun, 2012, 48(9): 1269-1271.

    [115] [115] TRUONG Q D, LIU J Y, CHUNG C C, et al. Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst[J]. Catal Commun, 2012, 19: 85-89.

    [116] [116] LI X, LIU H L, LUO D L, et al. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation[J]. Chem Eng J, 2012, 180: 151-158.

    [117] [117] WANG Q, WU W, MA K, et al. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photocatalytic reduction efficiency study under simulated solar radiation conditions[J]. Colloid Surface A, 2012, 409: 118-125.

    [118] [118] WANG Y G., LI B, ZHANG C L, et al. Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation[J]. Appl Catal B-Environ, 2013, 130-131: 277-284.

    [120] [120] SONG G X, XIN F, CHEN J S, et al. Photocatalytic reduction of CO2 in cyclohexanol on CdS-TiO2 heterostructured photocatalyst[J]. Appl Catal A-Gen, 2014, 473: 90-95.

    [121] [121] JIN J, YU J G, CUI C, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271.

    [122] [122] AGUIRRE M E, ZHOU R, EUGENE A J, et al. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion[J]. Appl Catal B-Environ, 2017, 2017(217): 485-493.

    [123] [123] SONG G X, WU X G, XIN F. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol[J]. Front Chem Sci Eng, 2017, 2017(11): 197-204.

    [124] [124] ZHANG L Q, CAO H Z, PEN Q Y, et al. Embedded CuO nanoparticles@TiO2-nanotube arrays for photo electrocatalytic reduction of CO2 to methanol[J]. Electrochim Acta, 2018, (283): 1507-1513.

    [125] [125] XU F Y, ZHANG J J, ZHU B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Appl Catal B-Environ, 2018, (230): 194-202.

    [126] [126] MENG A, WU S, CHENG B, et al. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance[J]. J Mater Chem A, 2018, (6): 4729-4736.

    [127] [127] KANDY M M, GAIKAR V G. Photocatalytic reduction of CO2 using CdS nanorods on porous anodic alumina support[J]. Mater Res Bull, 2018, 102: 440-449.

    [128] [128] KARAMIAN E, SHARIFNIA S. Enhanced visible light photocatalytic activity of BiFeO3-ZnO p-n heterojunction for CO2 reduction[J]. Mater Sci Eng B, 2018, 238: 142-148.

    [129] [129] XU F Y, MENG K, YU J G, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat Commun, 2020, 11(1): 4613.

    [130] [130] YAN J Y, WANG C H, MA H, et al. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction[J]. Appl Catal B-Environ, 2020, 268: 118401.

    [133] [133] LIU Y, GUO J G, LI F T, et al. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO[J]. Green Energy Environ, 2021, 6(2): 244-252.

    [136] [136] WANG C J, THOMPSON R L, BALTRUS J, et al. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts[J]. J Phys Chem Lett, 2010, 1(1): 48-53.

    [138] [138] HAN B, WANG J, YAN C, et al. The photoelectrocatalytic CO2 reduction on TiO2@ZnO heterojunction by tuning the conduction band potential[J]. Electrochimica Acta, 2018, 285: 23-29.

    [139] [139] TAHIR M. Well-designed Zn2FeO4/Ag/TiO2 nanorods heterojunction with Ag as electron mediator for photocatalytic CO2 reduction to fuels under UV/visible light[J]. J CO2 Util, 2020, 37: 134-146.

    [141] [141] LI D, ZHOU C J, XIE Z K, et al. Steering multistep charge transfer for highly selectively photocatalytic reduction of CO2 into CH4 over Pd/Cu2O/TiO2 ternary hybrid[J]. Solar RRL, 2021, 5(4): 2000813.

    [144] [144] GOMATHI D L, KAVITHA R. A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system[J]. Appl Surf Sci, 2016, 360: 601-622.

    [147] [147] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [148] [148] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer grapheme[J]. Nano Lett, 2008, 8(3): 902-907.

    [149] [149] LIGHTCAP I V, KOSEL T H, KAMAT P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide[J]. Nano Lett, 2010, 10(2): 577-583.

    [152] [152] LIANG Y T, VIJAYAN B K, GRAY K A, et al. Minimizing graphene defects enhances Titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Lett, 2011, 11(7): 2865-2870.

    [153] [153] TU W G, ZHOU Y, GAO J, et al. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels[J]. Adv Funct Mater, 2012, 22(6): 1101-1318.

    [154] [154] TAN L L, ONG W J, CHAI S P, et al. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide[J]. Nanoscale Res Lett, 2013, 8(1): 465-474.

    [155] [155] WANG P Q, BAI Y, LUO P Y, et al. Graphene-WO3 nanobelt composite: Elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catal Commun, 2013, 38(110): 82-85.

    [156] [156] BAEISSA E S. Green synthesis of methanol by photocatalytic reduction of CO2 under visible light using a graphene and tourmaline co-doped titania nanocomposites[J]. Ceram Int, 2014, 40(8): 12431-12438.

    [157] [157] WANG A, LI X S, ZHAO Y B, et al. Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances[J]. Powder Technol, 2014, 261: 42-48.

    [158] [158] YU J G, JIN J, CHENG B, et al. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel[J]. J Mater Chem A, 2014, 2(10): 3407-3416.

    [160] [160] SHOWN I, HSU H C, CHANG Y C, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu nanoparticle decorated graphene oxide[J]. Nano Lett, 2014, 14(11): 6097-6103.

    [161] [161] ZHANG L X, LI N, JIU H F, et al. ZnO-reduced graphene oxide nano-composites as efficient photocatalysts for photocatalytic reduction of CO2[J]. Ceram Int, 2015, 41(5): 6256-6262.

    [162] [162] TAN L L, ONG W J, CHAI S P, et al. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction[J]. Appl Catal B-Environ, 2015, 179: 160-170.

    [163] [163] LIU J H, NIU Y H, HE X, et al. Photocatalytic reduction of CO2 using TiO2 graphene nanocomposites[J]. J Nanomater, 2016(2): 1.

    [164] [164] KUMAR A, PRAJAPATI P K, PAL U. Ternary rGO/InVO4/Fe2O3 Z-scheme heterostructured photocatalyst for CO2 reduction under visible light irradiation[J]. ACS Sustain Chem Eng, 2018, 6(7): 8201-8211.

    [165] [165] KUMAR A, SHARMA G, NAUSHAD M, et al. Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO[J]. Chem Eng J, 2019, 370: 148-165.

    [166] [166] XU M, HU X T, WANG J Y, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. J Catal, 2019, 377: 652-661.

    [167] [167] FENG W, WU J. Photocatalytic reduction of CO2 under visible light over Fe/TiO2/rGO nanocomposites by one-step hydrothermal synthesis[J]. Earth Env Sci, 2020, 513: 012012.

    [169] [169] DEVI P, SINGH J P. Visible light induced selective photocatalytic reduction of CO2 to CH4 on In2O3-rGO nanocomposites[J]. J CO2 Util, 2021, 43: 101376.

    [170] [170] CAO S W, YU J G. G-C3N4-based photocatalysts for hydrogen generation[J]. J Phys Chem Lett, 2014, 5(12): 2101-2107.

    [171] [171] WANG Y, WANG X C, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew Chem Int Edit, 2012, 51(1): 68-89.

    [172] [172] YU J G, WANG K, XIAO W, et al. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nano-composite photocatalysts[J]. Phys Chem Chem Phys, 2014, 16(23): 11492-11501.

    [173] [173] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability[J]. Chem Rev, 2016, 116(12): 7159-7329.

    [174] [174] HU K, CHEN C Y, ZHU Y, et al. Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for enhanced visible-light photocatalysis[J]. J Colloid Interf Sci, 2019, 540: 115-125.

    [175] [175] LI HF, YU HT, QUAN X, et al. Uncovering the key role of the fermi level of the electron mediator in a Z-Scheme photocatalyst by detecting the charge transfer process of WO3-metal-g-C3N4(Metal=Cu, Ag, Au)[J]. ACS Appl Mater Inter, 2016, 8(3): 2111-2119.

    [176] [176] XU Q L, ZHANG L Y, YU J G, et al. S-Scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.

    [177] [177] WAGEH S, AL-GHAMDI A A, JAFER R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction[J]. Chin J Catal, 2021, 42: 667-669.

    [178] [178] CAO S W, LIU X F, YUAN Y P, et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid Photocatalysts[J]. Appl Catal B-Environ, 2014, 147: 940-946.

    [179] [179] SHI H F, CHEN G Q, ZHANG C L, et al. Polymeric gC3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. ACS Catal, 2014, 4(10): 3637-3643.

    [180] [180] YU W L, XU D F, PENG T Y. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: adirect Z-scheme mechanism[J]. J Mater Chem A, 2015, 3(39): 19936-19947.

    [182] [182] LI M L, ZHANG L X, FAN X Q, et al. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J Mater Chem A Mater Energy Sustain, 2015, 3(9): 5189-5196.

    [183] [183] ADEKOYA D, TAHIR M, AMIN N. g-C3N4/(Cu/TiO2) nanocomposite for enhanced photoreduction of CO2 to CH3OH and HCOOH under UV/visible light[J]. J CO2 Util, 2017, 18: 261-274.

    [184] [184] LIU H, ZHANG Z, MENG J C, et al. Novel visible-light-driven CdIn2S4/mesoporous g-C3N4 hybrids for efficient photocatalytic reduction of CO2 to methanol[J]. J Mol Catal A: Chem, 2017, 430: 9-19.

    [185] [185] HAN C Q, LI J, MA Z Y, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO[J]. Sci China Mater, 2018, 61: 1-8.

    [186] [186] WANG J S, QIN C L, WANG H J, et al. Exceptional photocatalytic activities for CO2 conversion on Al-O bridged g-C3N4/α-Fe2O3 Z-scheme nanocomposites and mechanism insight with isotopes[J]. Appl Catal B: Environ, 2018, 221: 459-466.

    [187] [187] CHANG P Y, TAENG I H. Photocatalytic conversion of gas phase carbon dioxide by graphitic carbon nitride decorated with cuprous oxide with various morphologies[J]. J CO2 Util, 2018, 26: 511-521.

    [188] [188] WANG Q L, WANG X K, YU Z H, et al. Artificial photosynthesis of ethanol using type-II g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system[J]. Nano Energy, 2019, 60: 827-835.

    [189] [189] GUO H W, CHEN M Q, ZHONG Q, et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. J CO2 Util, 2019, 33: 233-241.

    [190] [190] SUN Z M, FANG W, ZHAO L, et al. g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction[J]. Environ Int, 2019, 130: 104898-104907.

    [192] [192] CHEN X, CHEN Y J, WANG Q, et al. Boosted charge transfer and photocatalytic CO2 reduction over sulfur doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions[J]. Sci China Mater, 2022, 65(2): 400-412.

    [194] [194] GAN J C, WANG H H, HU H P, et al. Efficient synthesis of tunable band-gap CuInZnS decorated g-C3N4 hybrids for enhanced CO2 photocatalytic reduction and near infrared triggered photodegradation performance[J]. Appl Surf Sci, 2021, 564: 150396.

    [195] [195] WANG K, FENG X Z, SHANGGUAN Y Z, et al. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 s-scheme heterojunction[J]. Chin J Catal, 2022, 43(2): 246-254.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Haiyang, LIU Huiling. Research Progress on Semiconductor Composites in Photocatalytic Reduction of CO2[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 2024

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 5, 2022

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email: Haiyang JIANG (jianghaiyang999@163.com)

    DOI:

    CSTR:32186.14.

    Topics