Chinese Journal of Lasers, Volume. 44, Issue 7, 703022(2017)

Characteristics of 2 μm Pulse Laser Based on Argentum Nanorod Saturable Absorber

Zhang Cheng1,2,3、*, Zhang Huanian1,2,3, and Liu Jie1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(29)

    [3] [3] Dong Jun, Wang Guangyu, Ren Yingying. Advances in passively Q-switched solid-state lasers based on composite materials[J]. Chinese J Lasers, 2013, 40(6): 0601003.

    [4] [4] El-Sherif A F, King T A. Evaluation of a high power Q-switched Tm3+-doped silica fiber laser operating near 2 μm[C]. SPIE, 2006, 6102: 61020R.

    [5] [5] Yu J R, Trieu B C, Modlin E A, et al. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Optics Letters, 2006, 31(4): 462-464.

    [6] [6] Eichhorn M, Jackson S D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm[J]. Optics Letters, 2007, 32(19): 2780-2782.

    [7] [7] Wan H L, Cai W, Wang F, et al. High-quality monolayer graphene for bulk laser mode-locking near 2 μm[J]. Optical and Quantum Electronics, 2016, 48: 11.

    [8] [8] Meng P B, Yao B Q, Zhu G L, et al. RTP Q-switched 2 μm Tm, Ho: GdVO4 laser[J]. Laser Physics, 2011, 21(1): 94-96.

    [9] [9] Jiang M, Ma H F, Ren Z Y, et al. A graphene Q-switched nanosecond Tm-doped fiber laser at 2 μm[J]. Laser Physics Letters, 2013, 10(5): 055103.

    [10] [10] Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

    [11] [11] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

    [12] [12] Zhu H T, Zhao L N, Liu J, et al. Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser[J]. Optical Engineering, 2015, 55(8): 081304.

    [13] [13] Cai W, Jiang S Z, Xu S C, et al. Graphene saturable absorber for diode pumped Yb∶Sc2SiO5 mode-locked laser[J]. Optics & Laser Technology, 2015, 65: 1-4.

    [14] [14] Mortazavi S Z, Parvin P, Reyhani A. Fabrication of graphene based on Q-switched Nd∶YAG laser ablation of graphite target in liquid nitrogen[J]. Laser Physics Letters, 2012, 9(7): 547-552.

    [15] [15] Du J, Wang Q K, Jiang G B, et al. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction[J]. Scientific Reports, 2014, 4: 6346.

    [16] [16] Zhang M, Howe R C T, Woodward R I, et al. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: fiber laser[J]. Nano Research, 2015, 8(5): 1522-1534.

    [17] [17] Mao D, Wang Y D, Ma C J, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

    [18] [18] Kassani S H, Khazaeinezhad R, Jeong H, et al. All-fiber Er-doped Q-switched laser based on tungsten disulfide saturable absorber[J]. Optical Materials Express, 2015, 5(2): 373-379.

    [19] [19] Chen B H, Zhang X Y, Wu K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737.

    [20] [20] Kang Z, Xu Y, Zhang L, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers[J]. Applied Physics Letters, 2013, 103(4): 041105.

    [21] [21] Jiang T, Xu Y, Tian Q J, et al. Passively Q-switching induced by gold nanocrystals[J]. Applied Physics Letters, 2012, 101(15): 151122.

    [22] [22] Kang Z, Guo X Y, Jia Z X, et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991.

    [23] [23] Rao W Y, Li Q, Wang Y Z, et al. Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods[J]. ACS Nano, 2015, 9(3): 2783-2791.

    [24] [24] Li Q, Zhuo X L, Li S, et al. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties[J]. Advanced Optical Materials, 2015, 3(6): 801-812.

    [25] [25] Zhu Guiqin, Shi Jiangong, Wang Wanlin. Progress in preparation and applications of silver nano-materials[J]. Science & Technology Review, 2010, 28(22): 112-117.

    [26] [26] Zhang H N, Liu J. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region[J]. Optics Letters, 2016, 41(6): 1150-1152.

    [27] [27] Huang H T, Li M, Liu P, et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser[J]. Optics Letters, 2016, 41(12): 2700-2703.

    [28] [28] Zhang F, Zhang H N, Liu D H, et al. Tunable Nd, La∶SrF2 laser and passively Q-switched operation based on gold nanobipyramids saturable absorber[J]. Chinese Physic B, 2017, 26(2): 024205.

    [29] [29] Zhu J, Zhu K, Huang L Q. Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of rhodamine B[J]. Physics Letters A, 2008, 372(18): 3283-3288.

    Tools

    Get Citation

    Copy Citation Text

    Zhang Cheng, Zhang Huanian, Liu Jie. Characteristics of 2 μm Pulse Laser Based on Argentum Nanorod Saturable Absorber[J]. Chinese Journal of Lasers, 2017, 44(7): 703022

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 13, 2017

    Accepted: --

    Published Online: Jul. 5, 2017

    The Author Email: Cheng Zhang (13256715081@163.com)

    DOI:10.3788/cjl201744.0703022

    Topics