Microelectronics, Volume. 52, Issue 6, 1016(2022)
Research Progress on the Sneak Current Issue in Stacked Crossbar Array of Memristors
[1] [1] CARLOS E, BRANQUINHO R, MARTINS R, et al. Recent progress in solution-based metal oxide resistive switching devices [J]. Advanc Mater, 2021, 33(7): 2004328.
[2] [2] IELMINI D, WONG H S P. In-memory computing with resistive switching devices [J]. Nature Elec, 2018, 1(6): 333-343.
[3] [3] SHEN Z J, ZHAO C, QI Y F, et al. Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application [J]. Nanomaterials, 2020, 10(8): 1437.
[4] [4] MAHMOODI M R, NILI H, STRUKOV DMITRI B. Low power, dense, reliable, and resilient physically unclonable functions based on analog passive RRAM crossbar arrays [C]// IEEE Symp VLSI Technol (VLSI). Honolulu, HI, USA. 2018: 99-100.
[5] [5] CHEN W H, LI K X, LIN W Y, et al. A 65 nm 1 Mb nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors [C]// IEEE Int Sol Sta Circ Conf (ISSCC). San Francisco, CA, USA. 2018: 494-496.
[6] [6] BAEK I G, PARK C J, JU H, et al. Realization of vertical resistive memory (VRRAM) using cost effective 3D process [C]// Int Elec Dev Meet (IEDM). Washington D C, USA. 2011: 31.8.1-31.8.4.
[7] [7] LUO Q, XU X X, GONG T C, et al. 8-layers 3D vertical RRAM with excellent scalability towards storage class memory applications [C]// IEEE Int Elec Dev Meet (IEDM). San Francisco, CA, USA. 2017: 2.7.1-2.7.4.
[8] [8] TANAKA H, KIDO M, YAHASHI K, et al. Bit cost scalable technology with punch and plug process for ultra high density flash memory [C]// IEEE Symp VLSI Technol (VLSI). Kyoto, Japan. 2007: 14-15.
[9] [9] YOON H S, BAEK I G, ZHAO J S, et al. Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications [C]// Symp VLSI Technol (VLSI). Kyoto, Japan. 2009: 26-27.
[10] [10] ADAM G C, CHRAKRABARTI B, NILI H, et al. 3D ReRAM arrays and crossbars: fabrication, characterization and applications [C]// IEEE 17th Int Conf Nanotechnol (IEEE-NANO). Pittsburgh, PA, USA. 2017: 844-849.
[11] [11] ALUGURI R, TSENG T Y. Overview of selector devices for 3-D stackable cross point RRAM arrays [J]. IEEE J Elec Dev Society, 2016, 4(5): 294-306.
[12] [12] CASSUTO Y, KVATINSKY S, YAAKOBI E. Sneak-path constraints in memristor crossbar arrays [C]// IEEE Int Symp Inform Theory. Istanbul, Turkey. 2013: 156-160.
[13] [13] JOSHI R, ACKEN J M. Sneak path characterization in memristor crossbar circuits [J]. Int J Elec, 2021, 108(8): 1255-1272.
[14] [14] FAZIO A. Advanced technology and systems of cross point memory[C]// IEEE Int Elec Dev Meet (IEDM). San Francisco, CA, USA. 2020: 24.1.1-24.1.4.
[15] [15] SHI L Y, ZHENG G H, TIAN B B, et al. Research progress on solutions to the sneak path issue in memristor crossbar arrays [J]. Nanoscale Advances, 2020, 2(5): 1811-1827.
[16] [16] KIM S, KIM H D, CHOI S J. Numerical study of read scheme in one-selector one-resistor crossbar array [J]. Sol Sta Elec, 2015, 114: 80-86.
[17] [17] CHEN A. Analysis of partial bias schemes for the writing of crossbar memory arrays [J]. IEEE Trans Elec Dev, 2015, 62(9): 2845-2849.
[18] [18] SUN W, CHOI S, SHIN H. A new bias scheme for a low power consumption ReRAM crossbar array [J]. Semicond Sci Technol, 2016, 31(8): 085009.
[19] [19] SUN L F, ZHANG Y S, HAN G, et al. Self-selective Van Der Waals heterostructures for large scale memory array[J]. Nature Commun, 2019, 10(1): 1-7.
[20] [20] LI H H, WANG S C, ZHANG X, et al. Memristive crossbar arrays for storage and computing applications [J]. Advanc Intellig Syst, 2021, 3(9): 2100017.
[21] [21] CIPRUT A, FRIEDMAN E G. Energy-efficient write scheme for nonvolatile resistive crossbar arrays with selectors [J]. IEEE Trans Very Large Scale Integr Syst, 2018, 26(4): 711-719.
[22] [22] LEE M J, SEO S, KIM D C, et al. A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories [J]. Advanc Mater, 2007, 19(1): 73-76.
[23] [23] CHANG Y F, ZHOU F, FOWLER B W, et al. Memcomputing (memristor + computing) in intrinsic SiOx-based resistive switching memory: arithmetic operations for logic applications [J]. IEEE Trans Elec Dev, 2017, 64(7): 2977-2983.
[24] [24] KIM C S, KIM T, MIN K K, et al. 3D integrable W/SiNx/n-Si/p-Si 1D1R unipolar resistive random access memory synapse for suppressing reverse leakage in spiking neural network [J]. J Nanosci Nanotechnol, 2020, 20(8): 4735-4739.
[25] [25] JUNG J, BAE D, KIM S, et al. Self-rectifying resistive switching phenomena observed in Ti/ZrN/Pt/p-Si structures for crossbar array memory applications [J]. Appl Phys Lett, 2021, 118(11): 112106.
[26] [26] CHEN Y C, LI H, CHEN Y R, et al. A 3D bipolar ReRAM design with interleaved complementary memory layers [C]// Design, Automation & Test in Europe. Grenoble, France. 2011: 1-4.
[27] [27] LEE K J, CHANG Y C, LEE C J, et al. 1T1R nonvolatile memory with Al/TiO2/Au and sol-gel-processed insulator for barium zirconate nickelate gate in pentacene thin film transistor [J]. Mater, 2017, 10(12): 1408.
[28] [28] WANG Z R, LI Y, SU Y T, et al. Efficient implementation of boolean and full-adder functions with 1T1R RRAMs for beyond Von Neumann in-memory computing [J]. IEEE Trans Elec Dev, 2018, 65(10): 4659-4666.
[29] [29] WU J X, MO F, SARAYA T, et al. A monolithic 3-D integration of RRAM array and oxide semiconductor FET for in-memory computing in 3-D neural network [J]. IEEE Trans Elec Dev, 2020, 67(12): 5322-5328.
[30] [30] LIN Z H, SI M W, LYU X, et al. High-performance In2O3-based 1T1R FET for BEOL memory application [J]. IEEE Trans Elec Dev, 2021, 68(8): 3775-3779.
[31] [31] KIM S H, MOON D I, LU W, et al. Latch-up based bidirectional NPN selector for bipolar resistance-change memory [J]. Applied Phys Lett, 2013, 103(3): 033505.
[32] [32] BAE Y C, LEE A R, BAEK G H, et al. All oxide semiconductor-based bidirectional vertical PNP selectors for 3D stackable crossbar-array electronics [J]. Scientific Reports, 2015, 5(1): 1-11.
[33] [33] LEE M H, KAO C Y, YANG C L, et al. Reliability of ambipolar switching poly-Si diodes for cross-point memory applications [C]// 69th Dev Research Conf. Santa Barbara, CA, USA. 2011: 89-90.
[34] [34] LASHKARE S, PANWAR N, KUMBHARE P, et al. PCMO-based RRAM and NPN bipolar selector as synapse for energy efficient STDP [J]. IEEE Elec Dev Lett, 2017, 38(9): 1212-1215.
[35] [35] SHIN J, KIM I, BIJU K P, et al. TiO2 based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application [J]. J Applied Phys, 2011, 109(3): 033712.
[36] [36] KUMAR D, ALUGURI R, CHAND U, et al. One bipolar selector-one resistor for flexible crossbar memory applications [J]. IEEE Trans Elec Dev, 2019, 66(3): 1296-1301.
[37] [37] CHENG C D, LIU K Q, DANG B J, et al. Hf1-xZrxO2 based bipolar selector with high uniformity and high selectivity for large-scale integration of memristor crossbars [C]// 5th IEEE Elec Dev Technol & Manufac Conf (EDTM). Chengdu, China. 2021: 1-3.
[38] [38] SONG J, WOO J, LIM S, et al. Self-limited CBRAM with threshold selector for 1S1R crossbar array applications [J]. IEEE Elec Dev Lett, 2017, 38(11): 1532-1535.
[39] [39] LUO Q, YU J, ZHANG X M, et al. Nb1-xO2 based universal selector with ultra-high endurance (>1012), high speed (10 ns) and excellent Vth stability [C]// Symp VLSI Technol (VLSI). Kyoto, Japan. 2019: T236-T237.
[40] [40] ROBAYO D A, DELERUYELLE D, VIANELLO E, et al. Reliability and variability of 1S1R OxRAM-OTS for high density crossbar integration [C]// IEEE Int Elec Dev Meet (IEDM). San Francisco, CA, USA. 2019: 35.3.1-35.3.4.
[41] [41] CHOI B J, ZHANG J M, NORRIS K, et al. Trilayer tunnel selectors for memristor memory cells [J]. Advanc Mater, 2016, 28(2): 356-362.
[42] [42] WANG S S, DANG B J, SUN J, et al. Physically transient diode with ultrathin tunneling layer as selector for bipolar one diode-one resistor memory [J]. IEEE Elec Dev Lett, 2021, 42(5): 700-703.
[43] [43] LINN E, ROSEZIN R, KGELERGELER C, et al. Complementary resistive switches for passive nanocrossbar memories [J]. Nature Mater, 2010, 9(5): 403-406.
[44] [44] ZHANG H Z, ANG D S, ZHOU Y, et al. Enlarged read window in the asymmetric ITO/HfOx/TiN complementary resistive switch [J]. Applied Phys Lett, 2017, 111(4): 043501.
[45] [45] SHI K X, WANG Z Q, XU H, et al. Complementary resistive switching observed in graphene oxide-based memory device [J]. IEEE Elec Dev Lett, 2018, 39(4): 488-491.
[46] [46] OH S I, RANI J R, HONG S M, et al. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid [J]. Nanoscale, 2017, 9(40): 15314-15322.
[47] [47] MA H L, FENG J, LV H B, et al. Self-rectifying resistive switching memory with ultralow switching current in Pt/Ta2O5/HfO2-x/Hf stack [J]. Nanoscale Research Lett, 2017, 12(1): 1-6.
[48] [48] ARYA LEKSHMI J, NANDHA KUMAR T, HAIDER A F, et al. Self-rectifying self-limited resistive switching in Au/Al2O3/FTO devices [C]// IEEE 21st Int Conf Nanotechnol (NANO). Montreal, QC, Canada. 2021: 17-20.
[49] [49] NI R, YANG L, HUANG X D, et al. Controlled majority-inverter graph logic with highly nonlinear, self-rectifying memristor [J]. IEEE Trans Elec Dev, 2021, 68(10): 4897-4902.
[50] [50] WU Z H, ZHANG X M, SHI T, et al. Convertible volatile and non-volatile resistive switching in a self-rectifying Pt/TiOx/Ti memristor [C]// 5th IEEE Elec Dev Technol & Manufac Conf (EDTM). Chengdu, China. 2021: 1-3.
[51] [51] GONG T C, LUO Q, LV H B, et al. Unveiling the switching mechanism of a TaOx/HfO2 self-selective cell by probing the trap profiles with RTN measurements [J]. IEEE Elec Dev Lett, 2018, 39(8): 1152-1155.
[52] [52] LUO Q, ZHANG X M, YU J, et al. Memory switching and threshold switching in a 3D nanoscaled NbOx system [J]. IEEE Elec Dev Lett, 2019, 40(5): 718-721.
[53] [53] ZHAO X L, NIU J B, YANG Y, et al. Modulating the filament rupture degree of threshold switching device for self-selective and low-current nonvolatile memory application [J]. Nanotechnol, 2020, 31(14): 144002.
[54] [54] WANG Z W, KANG J, BAI G D, et al. Self-selective resistive device with hybrid switching mode for passive crossbar memory application [J]. IEEE Elec Dev Lett, 2020, 41(7): 1009-1012.
[55] [55] PARK H, KIM M, KIM H, et al. Self-selective organic memristor by engineered conductive nanofilament diffusion for realization of practical neuromorphic system [J]. Advanc Elec Mater, 2021, 7(8): 2100299.
[56] [56] YOON K J, KIM G H, YOO S, et al. Double-layer-stacked one diode-one resistive switching memory crossbar array with an extremely high rectification ratio of 109 [J]. Advanc Elec Mater, 2017, 3(7): 1700152.
[57] [57] LU C, YU J, CHI X W, et al. Self-compliance Pt/HfO2/Ti/Si one-diode-one-resistor resistive random access memory device and its low temperature characteristics [J]. Applied Phys Express, 2016, 9(4): 041501.
[58] [58] HSU C W, HOU T H, CHEN M C, et al. Bipolar Ni/TiO2/HfO2/Ni RRAM with multilevel states and self-rectifying characteristics [J]. IEEE Elec Dev Lett, 2013, 34(7): 885-887.
[59] [59] CHEN P H, ZHENG H X, SU Y T. Incorporation of a bipolar incremental step pulse programming with thermal forming to reduce the forming voltage in 1T1R structure resistance random access memory [J]. Applied Phys Express, 2020, 13(5): 056503.
[60] [60] HUANG W C, ZHENG H X, CHEN P H, et al. Incorporation of resistive random access memory into low-temperature polysilicon transistor with fin-like structure as 1T1R device [J]. Advanc Elec Mater, 2020, 6(6): 2000066.
[61] [61] BELMONTE A, KIM W, CHAN B T, et al. A thermally stable and high-performance 90-nm Al2O3/Cu-based 1T1R CBRAM cell [J]. IEEE Trans Elec Dev, 2013, 60(11): 3690-3695.
[62] [62] KHURANA G, KUMAR N, CHHOWALLA M, et al. Non-polar and complementary resistive switching characteristics in graphene oxide devices with gold nanoparticles: diverse approach for device fabrication [J]. Scientific Reports, 2019, 9(1): 1-10.
[63] [63] CHEN X M, HU W, LI Y, et al. Complementary resistive switching behaviors evolved from bipolar TiN/HfO2/Pt device [J]. Applied Phys Lett, 2016, 108(5): 053504.
Get Citation
Copy Citation Text
TAN Yixin, HE Huikai. Research Progress on the Sneak Current Issue in Stacked Crossbar Array of Memristors[J]. Microelectronics, 2022, 52(6): 1016
Category:
Received: Nov. 20, 2021
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: