Optics and Precision Engineering, Volume. 31, Issue 12, 1816(2023)
Railway few-shot intruding objects detection method with metric meta learning
[1] A CATALANO, FA BRUNO, C GALLIANO et al. An optical fiber intrusion detection system for railway security. Sensors and Actuators A: Physical, 253, 91-100(2017).
[2] F J ALVAREZ, J URENA, M MAZO et al. Ultrasonic Sensor System for Detecting Falling Objects on Railways, 866-871(17).
[3] [3] 3王瑞, 李霄峰, 史天运, 等. 基于视频深度学习的铁路周界入侵检测算法研究[J]. 交通运输系统工程与信息, 2020, 20(2): 61-68.WANGR, LIX F, SHIT Y, et al. Railway perimeter intrusion detection algorithms based on video deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 61-68. (in Chinese)
[4] [4] 4陈莹, 朱宇. 模态自适应权值学习机制下的多光谱行人检测网络[J]. 光学 精密工程, 2020, 28(12): 2700-2709. doi: 10.37188/OPE.20202812.2700CHENY, ZHUY. Multispectral pedestrian detection network under modal adaptive weight learning mechanism[J]. Opt. Precision Eng., 2020, 28(12): 2700-2709. (in Chinese). doi: 10.37188/OPE.20202812.2700
[5] [5] 5郭保青, 王宁. 基于改进深度卷积网络的铁路入侵行人分类算法[J]. 光学 精密工程, 2018, 26(12): 3040-3050. doi: 10.3788/ope.20182612.3040GUOB Q, WANGN. Pedestrian intruding railway clearance classification algorithm based on improved deep convolutional network[J]. Opt. Precision Eng., 2018, 26(12): 3040-3050. (in Chinese). doi: 10.3788/ope.20182612.3040
[6] [6] 6何文玉, 杨杰, 张天露. 基于深度学习的轨道异物入侵检测算法[J]. 计算机工程与设计, 2020, 41(12): 3376-3383.HEW Y, YANGJ, ZHANGT L. Orbital foreign object intrusion detection algorithm based on deep learning[J]. Computer Engineering and Design, 2020, 41(12): 3376-3383. (in Chinese)
[7] [7] 7宋闯,赵佳佳,王康等.面向智能感知的小样本学习研究综述[J].航空学报,2020,41(S1): 15-28.SONGCH, ZHAOJ J, WANGK, et al. A survey of few shot learning based on intelligent perception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):15-28.
[8] J SNELL, Y K SWERSK, R ZEMEL. Prototypical net-works for few-shot learning, 4077-4087(2017).
[9] F SUNG, Y YANG, L ZHANG et al. Learning to compare:Relation network for few-shot learning, 1199-1208(2018).
[10] C Y XU, J Z SHEN, X DU. A method of few-shot network intrusion detection based on meta-learning framework. IEEE Transactions on Information Forensics and Security, 15, 3540-3552(2020).
[11] A ALFASSY, L KARLINSKY, A AIDES et al. LaSO: Label-Set Operations Networks for Multi-Label Few-Shot Learning, 6541-6550(15).
[12] C ZHANG, Y J CAI, G S LIN et al. DeepEMD: Few-Shot Image Classification with Differentiable Earth Mover's Distance and Structured Classifiers, 12200-12210(13).
[13] K M HE, X Y ZHANG, S Q REN et al. Deep Residual Learning for Image Recognition, 770-778(27).
[14] J HU, L SHEN, G SUN. Squeeze-and-Excitation Networks, 7132-7141(18).
[15] J PARK, J Y LEE et al. CBAM: Convolutional Block Attention Module, 3-19(2018).
[16] Y D WEN, K P ZHANG, Z F LI et al. A Discriminative Feature Learning Approach for Deep Face Recognition, 499-515(2016).
[17] C FINN, P ABBEEL, S LEVINE. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, 1126-1135(11).
[18] O VINYALS, C BLUNDELL, T LILLICRAP et al. Matching Networks for One Shot Learning, 3637-3645(2016).
[19] W CHEN, Y LIU, Z KIRA et al. A closer look at few-shot classification, 2019(1904).
Get Citation
Copy Citation Text
Baoqing GUO, Defen ZHANG. Railway few-shot intruding objects detection method with metric meta learning[J]. Optics and Precision Engineering, 2023, 31(12): 1816
Category: Information Sciences
Received: Jun. 14, 2022
Accepted: --
Published Online: Jul. 25, 2023
The Author Email: GUO Baoqing (bqguo@bjtu.edu.cn)