Laser & Optoelectronics Progress, Volume. 55, Issue 10, 100001(2018)

Research Progress and Development Trend of Balanced Photodetectors

Wang Jiaojiao1,2, Zhao Zeping1,2, and Liu Jianguo1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(50)

    [1] [1] Rohde M, Caspar C, Heimes N, et al. Robustness of DPSK direct detection transmission format in standard fibre WDM systems[J]. Electronics Letters, 2000, 36(17): 1483-1484.

    [2] [2] Winzer P J, Chandrasekhar S, Kim H. Impact of filtering on RZ-DPSK reception[J]. IEEE Photonics Technology Letters, 2003, 15(6): 840-842.

    [3] [3] Winzer P J, Essiambre R J. Advanced modulation formats for high-capacity optical transport networks[J]. Journal of Lightwave Technology, 2006, 24(12): 4711-4728.

    [4] [4] Arnon S. Power versus stabilization for laser satellite communication[J]. Applied Optics, 1999, 38(15): 3229-3233.

    [5] [5] Heine F, Hildebrand U, Lange R, et al. 5.6 Gbps optical intersatellite communication link[J]. Proceedings of SPIE, 2009, 7199: 719906.

    [6] [6] Jono A T, Takayama Y, Shiratama K, et al. Overview of the inter-or-bit and orbit-to-ground laser communication demonstration by OICE-TS[J]. Proceedings of SPIE, 2007, 6457: 645702.

    [7] [7] Kim H J, Leaird D E, Weiner A W. Improved RF performance of a comb-based microwave photonic filter using a balanced photodetector[C]∥IEEE International Topical Meeting on Microwave Photonics (MWP), 2013: 80-83.

    [8] [8] Zhang W, Wen A J, Gao Y S, et al. Large bandwidth photonic microwave image rejection mixer with high conversion efficiency[J]. IEEE Photonics Journal, 2017, 9(3): 2681663.

    [9] [9] Meijerink A, Roeloffzen C G H, Meijerink R, et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis[J]. Journal of Lightwave Technology, 2010, 28(1): 3-18.

    [10] [10] Joshi A, Becker D, Wree C, et al. Coherent optical receiver system with balanced photo-detection[J]. Proceedings of SPIE, 2016, 6243: 62430E.

    [11] [11] Chan V W. Free-space optical communications[J]. Journal of Lightwave Technology, 2006, 24(12): 4750-4762.

    [12] [12] Bach H G. Ultra-broadband photodiodes and balanced detectors towards 100 Gbit/s and beyond[C]. Proceedings of SPIE, 2005, 6014: 60140B.

    [13] [13] Sinsky J H, Adamiecki A, Gnauck A, et al. A 42.7-Gb/s integrated balanced optical front end with record sensitivity[C]∥Optical Fiber Communications Conference, IEEE, 2003: PD39-P1-3.

    [14] [14] Painchaud Y, Pelletier M, Poulin M, et al. Ultra-compact coherent receiver based on hybrid integration on silicon[C]∥Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013: OMJ.2.

    [15] [15] Liu H Y, Zhang Y G, Ai Y, et al. Design and implementation of balance detector used in coherent optical communication system[J]. Laser & Optoelectronics Progress, 2014, 51(7): 070601.

    [16] [16] Dai Y H, Ai Y, Xiao W, et al. The research of balance detector for high-speed coherence optical communications[J]. Acta Photonica Sinica, 2015, 44(1): 0125002.

    [17] [17] Liang H X, Dai Y H, Ai Y, et al. Design and test of space optical coupling balance detector[J]. Infrared and Laser Engineering, 2017, 46(3): 196-202.

    [18] [18] Carleton H R, Maloney W T. A balanced optical heterodyne detector[J]. Applied Optics, 1968, 7(6): 1241-1246.

    [19] [19] Abbas G L, Chan V W, Yee S, et al. A dual-detector optical heterodyne receiver for local oscillator noise suppression[J]. Journal of Lightwave Technology, 1985, 3(5): 1110-1122.

    [20] [20] Jacobsen G, Kan J X, Garrett I. Tuned front-end design for heterodyne optical receivers[J]. Journal of Lightwave Technology, 1989, 7(1): 105-114.

    [21] [21] Beling A. High-power microwave photodiodes[C]∥Optical Fiber Communication Conference and Exhibition, OSA, 2014: Tu2A.4.

    [22] [22] Cross A S, Zhou Q G, Beling A, et al. High power flip-chip mounted photodiode array[J]. Optics Express, 2013, 21(8): 9967-9973.

    [23] [23] Li Q L, Li K J, Fu Y, et al. High-power flip-chip bonded photodiode with 110 GHz bandwidth[J]. Journal of Lightwave Technology, 2016, 34(9): 2139-2144.

    [24] [24] Runge P, Zhou G, Beckerwerth T, et al. InP-based waveguide integrated photodetectors[C]∥Photonics Conference, IEEE, 2017: 256-257.

    [25] [25] Zhou G, Runge P, Lankes S, et al. Waveguide integrated pin-photodiode array with high power and high linearity[C]∥International Topical Meeting on Microwave Photonics, IEEE, 2015: 1-4.

    [26] [26] Beling A, Xie X J, Campbell J C. High-power, high-linearity photodiodes[J]. Optica, 2016, 3(3): 328-338.

    [27] [27] Ishibashi T, Muramoto Y, Yoshimatsu T, et al. Unitraveling-carrier photodiodes for terahertz applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 3804210.

    [28] [28] Li Z, Pan H, Chen H, et al. High-saturation-current modified uni-traveling-carrier photodiode with cliff layer[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 626-632.

    [29] [29] Houtsma V, Hu T, Weimann N G, et al. A 1 W linear high-power InP balanced uni-traveling carrier photodetector[C]∥37th European Conference and Exposition on Optical Communications, IEEE, 2011: Tu.3.LeSaleve.6.

    [30] [30] Zhou Q G, Cross A S, Fu Y, et al. Balanced InP/InGaAs photodiodes with 1.5-W output power[J]. IEEE Photonics Journal, 2013, 5(3): 6800307.

    [31] [31] Xie X J, Zhou Q G, Norberg E, et al. High-power heterogeneously integrated waveguide-coupled balanced photodiodes on silicon-on-insulator[C]∥IEEE Photonics Conference, IEEE, 2015: 468-469.

    [32] [32] Li Z, Chen H, Pan H P, et al. High-power integrated balanced photodetector[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1858-1860.

    [33] [33] Beling A, Cross A S, Zhou Q G, et al. High-power flip-chip balanced photodetector with >40 GHz bandwidth[C]∥IEEE Photonics Conference, IEEE, 2013: 352-353.

    [34] [34] Zhou Q G, Cross A S, Beling A, et al. High power balanced InGaAs/InP photodetector flip-chip bonded on diamond[C]∥Integrated Photonics Research, Silicon and Nanophotonics, OSA, 2013: IW5A.5.

    [35] [35] Beling A, Chen H, Duan N, et al. 10 GHz balanced photodetector with +17 dBm RF output power[C]∥33rd European Conference and Exhibition on Optical Communication (ECOC), 2007: 1-2.

    [36] [36] Zhou G, Runge P, Keyvaninia S, et al. High-power InP-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. Journal of Lightwave Technology, 2017, 35(4): 717-721.

    [37] [37] Wang Y, Yu Q, Xie X J, et al. InP-based balanced photodiodes heterogeneously integrated on SOI nano-waveguides[C]∥IEEE International Topical Meeting on Microwave Photonics (MWP), IEEE, 2016: 237-240.

    [38] [38] Xie X J, Zhou Q G, Norberg E, et al. Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12 dBm output power at 40 GHz[C]∥Optical Fiber Communication Conference and Exhibition (OFC), OSA, 2015: Th5B.7.

    [39] [39] Runge P, Zhou G, Beckerwerth T, et al. Waveguide integrated balanced photodetectors for coherent receivers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 2723844.

    [40] [40] Schramm C, Bach H G, Beling A, et al. High-bandwidth balanced photoreceiver suitable for 40 Gb/s RZ-DPSK modulation formats[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1): 127-134.

    [41] [41] Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode[J]. Optics Express, 2015, 33: 27213-27220.

    [42] [42] Verbist J, Verplaetse M, Srivinasan S A, et al. First real-time 100 Gb/s NRZ-OOK transmission over 2 km with a silicon photonic electro-absorption modulator[C]∥Optical Fiber Communications Conference and Exhibition (OFC), OSA, 2017: Th5C.4.

    [43] [43] Schell M, Bach H G, Janiak K, et al. Coherent receiver photonic integrated circuits[C]∥Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA, 2013: OW3J.6.

    [44] [44] Doerr C, Winzer P, Chen Y, et al. Monolithic polarization and phase diversity coherent receiver in silicon[J]. Journal of Lightwave Technology, 2010, 28(4): 520-525.

    [45] [45] Doerr C, Buhl L, Baeyens Y, et al. Packaged monolithic silicon 112-Gb/s coherent receiver[J]. IEEE Photonics Technology Letters, 2011, 23(12): 762-764.

    [46] [46] Mohammed S H, Meer N S, Odile L L. A 16 GHz silicon-based monolithic balanced photodetector with on-chip capacitors for 25 Gbaud front-end receivers[J]. Optics Express, 2013, 21(26): 32680-32689.

    [47] [47] Runge P, Stefan S, Angela S, et al. Monolithic InP receiver chip with a 90° hybrid and 56 GHz balanced photodiodes[C]∥European Conference and Exhibition on Optical Communication, OSA, 2012: Mo.2.E.3.

    [48] [48] Takechi M, Tateiwa Y, Kurokawa M, et al. 64 GBaud high-bandwidth micro intradyne coherent receiver using high-efficiency and high-speed InP-based photodetector integrated with 90° hybrid[C]∥Optical Fiber Communications Conference and Exhibition (OFC), OSA, 2017: Th1A.2.

    [49] [49] Zhang Z Y, Felipe D, Katopodis V, et al. Hybrid photonic integration on a polymer platform[J]. Photonics, 2015, 2(3): 1005-1026.

    [50] [50] Zhao Z P, Liu Y, Zhang Z K, et al. 1. 5 μm, 8×12. 5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application[J]. Chinese Optics Letters, 2016, 15(12): 120603.

    Tools

    Get Citation

    Copy Citation Text

    Wang Jiaojiao, Zhao Zeping, Liu Jianguo. Research Progress and Development Trend of Balanced Photodetectors[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Mar. 19, 2018

    Accepted: --

    Published Online: Oct. 14, 2018

    The Author Email:

    DOI:10.3788/lop55.100001

    Topics