Optical Communication Technology, Volume. 47, Issue 9, 54(2021)
Stability control technology of microring array based on orthogonal perturbation signal
[1] [1] SCHALLER R R. Moore's law: past, present and future[J]. IEEE Spectrum, 1997, 34(6): 52-59.
[2] [2] LUO L, OPHIR N, CHEN C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[EB/OL]. [2020-11-12]. https://www.nature.com/articles/ncomms4069/.
[3] [3] GUHA B, CARDENAS J, LIPSON M. Athermal silicon microring reso-
[4] [4] GUHA B, KYOTOKU B B C, LIPSON M. CMOS-compatible athermal silicon microring resonators[J]. Optics Express, 2010, 18(4): 3487-3493.
[5] [5] PADMARAJU K, CHAN J, CHEN L, et al. Thermal stabilization of a microring modulator using feedback control[J]. Optics Express, 2012, 20(27): 27999-28008.
[6] [6] PADMARAJU K, LOGAN D F, ZHU X, et al. Integrated thermal stabilization of a microring modulator[J]. Optics Express, 2013, 21(12): 14342-14350.
[7] [7] WANG Z, PAEZ D J, ELRAHMAN A I, et al. Resonance control of a silicon micro-ring resonator modulator under high-speed operation using the intrinsic defect-mediated photocurrent[J]. Optics Express, 2017, 25(20): 24827-24836.
[8] [8] MELIKYAN A, KIM K, CHEN Y K, et al. Tapless locking of silicon ring modulators for WDM applications[C]//Optical Fiber Communication Conference 2017(OFC 2017), March 19-23, 2017, Los Angeles, USA. NewYork: IEEE, 2017: 1-3.
[9] [9] PADMARAJU K, LOGAN D F, SHIRAISHI T, et al. Wavelength locking and thermally stabilizing microring resonators using dithering signals[J]. Journal of Lightwave Technology, 2014, 32(3): 505-512.
[10] [10] LIN S, ZHENG X, AMBERG P, et al. Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit[C]// Optical Fiber Communication Conference 2016(OFC 2016), March 20-24, 2016, Anaheim, USA. NewYork: IEEE, 2016: 1-3.
[11] [11] ZHU Q, QIU C, HE Y, et al. Self-homodyne wavelength locking of a silicon microring resonator[J]. Optics Express, 2019, 27(25): 36625-36636.
[12] [12] ZHANG Y, LI Y, FENG S, et al. Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 136-149.
[13] [13] ANDRESEN S. The looping algorithm extended to base rearrangeable switching networks[J]. IEEE Transactions on Communications, 1977, 25(10): 1057-1063.
[14] [14] LI Y, POON A W. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption- based photodetector[J]. Optics Express, 2015, 23(1) : 360-372.
[15] [15] JAYATILLEKA H, MURRAY K, GUILLEN-TORRES M, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters[J]. Optics Express, 2015, 23(19): 25084-25097.
[16] [16] DONG P, GATDULA R, KIM K, et al. Simultaneous wavelength locking of microring modulator array with a single monitoring signal[J]. Optics Express, 2017, 25(14): 16040-16046.
[17] [17] GATDULA R, KIM K, MELIKYAN A, et al. Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver[J]. Optics Express, 2017, 25(22): 27119-27126.
[18] [18] YANG F, ZHANG W, ZHAO S, et al. Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array[J]. Optics Express, 2019, 27(5): 6037-6046.
Get Citation
Copy Citation Text
SUN Lingyun, ZHANG Wenjia, YANG Fan, HE Zuyuan. Stability control technology of microring array based on orthogonal perturbation signal[J]. Optical Communication Technology, 2021, 47(9): 54
Category:
Received: Nov. 12, 2020
Accepted: --
Published Online: Nov. 15, 2021
The Author Email: