Optics and Precision Engineering, Volume. 28, Issue 4, 859(2020)
Parallel chromatic confocal measurement system based on digital micromirror device
[2] [2] BAI J, LI X H, ZHOU Q, et al.. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler[J]. Optics Express, 2019, 27(8): 10961-10973.
BAI J, LI X H, ZHOU Q, et al.. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler[J]. Optics Express, 2019, 27(8): 10961-10973.
[3] [3] ZHUO G Y, HSU C, WANG Y, et al.. Chromatic confocal microscopy to rapidly reveal nanoscale surface/interface topography by position-sensitive detection[J]. Applied Physics Letters, 2018, 113(8): 083106.
ZHUO G Y, HSU C, WANG Y, et al.. Chromatic confocal microscopy to rapidly reveal nanoscale surface/interface topography by position-sensitive detection[J]. Applied Physics Letters, 2018, 113(8): 083106.
[4] [4] CHEN L, NGUYEN D T, CHANG Y W. Precise optical surface profilometry using innovative chromatic differential confocal microscopy[J]. Optics Letters, 2016, 41(24): 5660-5663.
CHEN L, NGUYEN D T, CHANG Y W. Precise optical surface profilometry using innovative chromatic differential confocal microscopy[J]. Optics Letters, 2016, 41(24): 5660-5663.
[5] [5] SONG L M, WEI Z, YANG Y G, et al. Noncontact high-precision flaw detection and three-dimensional reconstruction of object surface [J]. Opt. Precision Eng., 2017, 25 (10s): 87-94. (in Chinese)
SONG L M, WEI Z, YANG Y G, et al. Noncontact high-precision flaw detection and three-dimensional reconstruction of object surface [J]. Opt. Precision Eng., 2017, 25 (10s): 87-94. (in Chinese)
[6] [6] HARMENING W M, TIRUVEEDHULA P, ROORDA A, et al.. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye[J]. Biomedical Optics Express, 2012, 3(9): 2066-2077.
HARMENING W M, TIRUVEEDHULA P, ROORDA A, et al.. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye[J]. Biomedical Optics Express, 2012, 3(9): 2066-2077.
[7] [7] YU Q, ZHANG K, CUI C C, et al.. Method of thickness measurement for transparent specimens with chromatic confocal microscopy[J]. Applied Optics, 2018, 57(33): 9722-9728.
YU Q, ZHANG K, CUI C C, et al.. Method of thickness measurement for transparent specimens with chromatic confocal microscopy[J]. Applied Optics, 2018, 57(33): 9722-9728.
[8] [8] BOETTCHER T, GRONLE M, OSTEN W. Single-shot multilayer measurement by chromatic confocal coherence tomography[C]. SPIE Optical Metrology. Proc SPIE 10329, Optical Measurement Systems for Industrial Inspection X, Munich, Germany, 2017: 103290K.
BOETTCHER T, GRONLE M, OSTEN W. Single-shot multilayer measurement by chromatic confocal coherence tomography[C]. SPIE Optical Metrology. Proc SPIE 10329, Optical Measurement Systems for Industrial Inspection X, Munich, Germany, 2017: 103290K.
[9] [9] SANZ C, GIUSCA C, MORANTZ P, et al.. Form measurement of a 0.1 mm diameter wire with a chromatic confocal sensor, with associated uncertainty evaluation[J]. Measurement Science and Technology, 2018, 29(7): 074010.
SANZ C, GIUSCA C, MORANTZ P, et al.. Form measurement of a 0.1 mm diameter wire with a chromatic confocal sensor, with associated uncertainty evaluation[J]. Measurement Science and Technology, 2018, 29(7): 074010.
[10] [10] WANG J N. Research and Design of Chromatic Confocal Displacement Sensor[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)
WANG J N. Research and Design of Chromatic Confocal Displacement Sensor[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)
[11] [11] LIU B Q. Precise Measurement of Profile and Thickness Based on Color Spectral Confocal[D]. Wuhan: Wuhan Institute of Technology, 2018.(in Chinese)
LIU B Q. Precise Measurement of Profile and Thickness Based on Color Spectral Confocal[D]. Wuhan: Wuhan Institute of Technology, 2018.(in Chinese)
[12] [12] MA J, QI Y J, LU Z X, et al.. Design of linear dispersive objective for chromatic confocal displacement sensor[J]. Chinese Journal of Lasers, 2019, 46(7): 211-217.(in Chinese)
MA J, QI Y J, LU Z X, et al.. Design of linear dispersive objective for chromatic confocal displacement sensor[J]. Chinese Journal of Lasers, 2019, 46(7): 211-217.(in Chinese)
[13] [13] ZHOU Y, GUO B H, LI C, et al.. Research on spectrum bandwidth of emergent light in lens center thickness measurement system[J]. Laser & Optoelectronics Progress, 2015, 52(8): 148-154.(in Chinese)
ZHOU Y, GUO B H, LI C, et al.. Research on spectrum bandwidth of emergent light in lens center thickness measurement system[J]. Laser & Optoelectronics Progress, 2015, 52(8): 148-154.(in Chinese)
[14] [14] HILLENBRAND M, WEISS R, ENDRODY C, et al.. Chromatic confocal matrix sensor with actuated pinhole arrays[J]. Applied Optics, 2015, 54(15): 4927-4936.
HILLENBRAND M, WEISS R, ENDRODY C, et al.. Chromatic confocal matrix sensor with actuated pinhole arrays[J]. Applied Optics, 2015, 54(15): 4927-4936.
[15] [15] TIZIANI H J, ACHI R, KRAMER R N. Chromatic confocal microscopy with microlenses[J]. Journal of Modern Optics, 1996, 43(1): 155-163.
TIZIANI H J, ACHI R, KRAMER R N. Chromatic confocal microscopy with microlenses[J]. Journal of Modern Optics, 1996, 43(1): 155-163.
[17] [17] HILLENBRAND M, MITSCHUNAS B, BRILL F, et al.. Spectral characteristics of chromatic confocal imaging systems[J]. Applied Optics, 2014, 53(32): 7634-7642.
HILLENBRAND M, MITSCHUNAS B, BRILL F, et al.. Spectral characteristics of chromatic confocal imaging systems[J]. Applied Optics, 2014, 53(32): 7634-7642.
[18] [18] KIM H, MOON S K, SEO M. Hybrid layering scanning-projection micro-stereolithography for fabrication of conical microlens array and hollow microneedle array[J]. Microelectronic Engineering, 2016, 153: 15-19.
KIM H, MOON S K, SEO M. Hybrid layering scanning-projection micro-stereolithography for fabrication of conical microlens array and hollow microneedle array[J]. Microelectronic Engineering, 2016, 153: 15-19.
[19] [19] MENG J J, YU J, MO Z Q, et al.. Laser spot illuminance measurement method based on scattering imaging[J]. Acta Optica Sinica, 2019, 39(7): 142-149.(in Chinese)
MENG J J, YU J, MO Z Q, et al.. Laser spot illuminance measurement method based on scattering imaging[J]. Acta Optica Sinica, 2019, 39(7): 142-149.(in Chinese)
[20] [20] CUI CH C, LI H, YU Q, et al.. Design of adjustable dispersive objective lens for chromatic confocal system[J]. Opt. Precision Eng., 2017, 25(4): 343-351.(in Chinese)
CUI CH C, LI H, YU Q, et al.. Design of adjustable dispersive objective lens for chromatic confocal system[J]. Opt. Precision Eng., 2017, 25(4): 343-351.(in Chinese)
[21] [21] ZHANG K, YU Q, SHAO Z G, et al.. Chromatic confocal measurement method using color camera and color conversion algorithm[J]. Acta Optica Sinica, 2019, 39(12): 151-158.(in Chinese)
ZHANG K, YU Q, SHAO Z G, et al.. Chromatic confocal measurement method using color camera and color conversion algorithm[J]. Acta Optica Sinica, 2019, 39(12): 151-158.(in Chinese)
Get Citation
Copy Citation Text
ZHANG Yi, YU Qing, ZHANG Kun, CHENG Fang, CUI Chang-cai. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Optics and Precision Engineering, 2020, 28(4): 859
Category:
Received: Nov. 15, 2019
Accepted: --
Published Online: Jul. 2, 2020
The Author Email: