Photonics Insights, Volume. 1, Issue 1, R03(2022)
Classical and generalized geometric phase in electromagnetic metasurfaces
Fig. 1. (a) Schematic illustration of AB effect, where an electron encircles a magnetic flux Φ confined to a thin, long solenoid. Although the magnetic field is zero in the vicinity of the superposed wave packets, the vector potential is non-zero outside the solenoid. Thus, the electronic wave packets acquire relative phases of exp(
Fig. 2. Roadmap of the development of the geometric phase in optics.
Fig. 3. Different elements for generating PB phase. (a) An adjustable waveguide phase shift at the microwave band is composed of a rotatable half-wave plate sandwiched between two quarter-wave plates. Reproduced with permission from Ref. [17]. (b) Actual quantized phase as a function of the desired phase, as well as discrete local grating orientation, with a scanning electron microscope (SEM) image of space-variant gratings displayed in the inset. Reproduced with permission from Ref. [25]. (c) Schematic representation of geometric phase metasurface for generating OAMs via PB phase. Reproduced with permission from Ref. [27]. (d) SEM image of geometric phase metasurface composed of space-variant plasmonic nano-apertures. Scale bar represents 500 nm. Reproduced with permission from Ref. [29].
Fig. 4. Quasi-continuous geometric phase. (a) SEM figure of the rotational optical catenary array and measured intensity patterns of OAMs generated through PB phase. Reproduced with permission from Ref. [30]. (b) Optical layout of wide-FOV camera with a single layer quadratic phase metalens. Optical and SEM images of fabricated wide-angle metalens composed of catenary-like structures. Reproduced with permission from Ref. [71]. (c) SEM image of cubic phase metasurface composed of catenary-like structures and measured results of the generated accelerating beams. Reproduced with permission from Ref. [73]. (d) SEM image of holographic metasurface composed of C-shaped dielectric nanoarcs and corresponding holographic images at different wavelengths. Reproduced with permission from Ref. [64].
Fig. 5. (a) Schematic of a
Fig. 6. Single spin-decoupled metasurface for vectorial optical field characterization. (a) Schematic diagram. (b) Measured intensity pattern of CVVB with different intensity patterns. CVVB, cylindrical vortex vector beam. Reproduced with permission from Ref. [92].
Fig. 7. Nonlinear geometric phase metasurface. (a) Nonlinear geometric phases are generated through THG of a C2 nanostructure and a C4 nanostructure. (b) Illustration of phase-controlled diffraction of THG signals for RCP light at the fundamental frequency. (c) Measured diffraction pattern of THG signals from C2 and C4 metasurfaces for circular polarization states of the fundamental and THG waves. (a)–(c) Reproduced with permission from Ref. [96]. (d) Sketch of the proposed PB nonlinear metasurface with a phase gradient in
Fig. 8. High-order linear PB phase metasurfaces. (a) Rotation dependence of the principal axis and meta-atoms with C1, C2, C3, C6, C5, and C10 rotational symmetry in the square lattice. (b) Rotation dependence of the principal axis and meta-atoms with C1, C2, C4, C8, C5, and C10 rotational symmetry in the hexagonal lattice. Double-headed arrows indicate the orientations of the principal array axis.
|
Get Citation
Copy Citation Text
Yinghui Guo, Mingbo Pu, Fei Zhang, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Xiangang Luo, "Classical and generalized geometric phase in electromagnetic metasurfaces," Photon. Insights 1, R03 (2022)
Category: Review Articles
Received: Apr. 26, 2022
Accepted: Jul. 4, 2022
Published Online: Aug. 3, 2022
The Author Email: Pu Mingbo (pmb@ioe.ac.cn), Luo Xiangang (lxg@ioe.ac.cn)