Journal of Innovative Optical Health Sciences, Volume. 12, Issue 2, 1950008(2019)
Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue
[1] [1] American Cancer Society, Cancer Facts & Figures (2016).
[2] [2] Canadian Cancer Society, Special Topic?: Predictions of the Future Burden of Cancer in Canada (2016).
[3] [3] L. Tabár and P. B. Dean, “A new era in the diagnosis and treatment of breast cancer,” Breast J. 16(1), S2–S4 (2010).
[4] [4] H. D. Nelson, K. Tyne, A. Naik, C. Bougatsos, B. K. Chan, L. Humphrey, “Screening for breast cancer: Systematic evidence review update for the U. S. preventive services task force,” Ann. Intern. Med. 151(10), 716–726 (2009).
[5] [5] A. Berrington de González, S. Darby, “Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries,” Lancet 363(9406), 345–351 (2004).
[6] [6] C. M. Ronckers, C. A. Erdmann, C. E. Land, “Radiation and breast cancer: A review of current evidence,” Breast Cancer Res. 7(1), 21–32 (2005).
[7] [7] A. Hassan and M. El-shenawee, “Review of electromagnetic techniques for breast cancer detection,” IEEE Rev. Biomed. Eng. 4, 103–118 (2011).
[8] [8] J. Gonzalez, “Hand-held optical imager (Gen-2): Improved instrumentation and target detectability,” J. Biomed. Opt. 17(8), 81402 (2012).
[9] [9] T. Vo-dinh, Biomedical Photonics Handbook, CRC Press (2003).
[10] [10] S. A. Prahl, “Optical properties spectra,” http://omlc.ogi.edu/spectra.
[11] [11] F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[12] [12] P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[13] [13] D. A. Boas, C. Pitris, N. Ramanujam, Handbook of Biomedical Optics, CRC Press (2011).
[14] [14] T. J. Farrell, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879 (1992).
[15] [15] S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 41302 (2008).
[16] [16] M. L. Flexman, H. K. Kim, R. Stoll, M. A. Khalil, C. J. Fong, A. H. Hielscher, “A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue,” Rev. Sci. Instrum. 83(3), 33108 (2012).
[17] [17] S. K. Biswas, K. Rajan, R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 24702 (2009).
[18] [18] S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, C. Lopez-Penalver, “Hand-Held Optical Devices for Breast Cancer: Spectroscopy and 3-D Tomographic Imaging,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1298–1312 (2012).
[19] [19] S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review.,” Med. Eng. Phys. 31(5), 495–509 (2009).
[20] [20] K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, P. H. Chou, “HBS: A Handheld Breast Cancer detector based on frequency domain photon migration with full heterodyne,” 2006 IEEE Biomed. Circuits Syst. Conf., London, pp. 114–117 (2006).
[21] [21] H. Yang, L. Xi, S. Samuelson, H. Xie, L. Yang, H. Jiang, “Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through a MEMS scanning mirror,” Biomed. Opt. Express 4(3), 427–432 (2013).
[22] [22] A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 44005 (2012).
[23] [23] M. Shokoufi, F. Golnaraghi, “Development of a handheld diffuse optical breast cancer assessment probe,” J. Innov. Opt. Health Sci. 9(2), 1–10 (2015).
[24] [24] A. Godavarty, S. Rodriguez, Y.-J. Jung, S. Gonzalez, “Optical imaging for breast cancer prescreening,” Breast Cancer Targets Ther. 2015(7), 193–209 (2015).
[25] [25] Q. Zhu, S. Tannenbaum, S. Kurtzman, “Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring,” Surg. Oncol. Clin. N. Am. 16(2), 307–321 (2007).
[26] [26] T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[27] [27] V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[28] [28] S. Fantini, A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).
[29] [29] R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanbrg, “Time-gated viewing studies on tissue like phantoms,” Appl. Opt. 35(19), 3432–3440 (1996).
[30] [30] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. Van Gemert, “Optical properties of intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[31] [31] S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. a. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
[32] [32] H. J. van Staveren, C. J. Moes, J. van Marie, S. a Prahl, M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[33] [33] “Biomimic Optical Phantoms,” http://www.ino.ca/en/products/.
[34] [34] M. Shokoufi, “Multi — modality breast cancer assessment tools using diffuse optical and electrical impedance spectroscopy,” Simon Fraser University (2016).
Get Citation
Copy Citation Text
Majid Shokoufi, Farid Golnaraghi. Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue[J]. Journal of Innovative Optical Health Sciences, 2019, 12(2): 1950008
Received: Jul. 25, 2018
Accepted: Feb. 5, 2019
Published Online: Apr. 16, 2019
The Author Email: Shokoufi Majid (mshokouf@sfu.ca)