Infrared and Laser Engineering, Volume. 52, Issue 2, 20220366(2023)
ICESat-2 lidar sea surface signal extraction and ocean wave element calculation
[1] [1] Liu Y G. Satellite Oceanography[M]. Beijing: Higher Education Press, 2009. (in Chinese)
[2] C P Gommenginger, M A Srokosz, P G Challenor, et al. Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophysical Research Letters, 30, 2150(2003).
[3] Y Quilfen, B Chapron, F Collard, et al. Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters. Marine Geodesy, 27, 535-549(2004).
[4] E B L Mackay, C H Retzler, P G Challenor, et al. A parametric model for ocean wave period from Ku band altimeter data. Journal of Geophysical Research: Oceans, 113, C03029(2008).
[5] [5] Yang J S. Synthetic Aperture Radar Remote Sensing Technology f Sea Surface Wind Field, Ocean Wave Internal Wave[M]. Beijing: China Ocean Press, 2005. (in Chinese)
[6] T A Neumann, A J Martino, T Markus, et al. The Ice, Cloud, And Land Elevation Satellite–2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325(2019).
[7] [7] Neumann T, Brenner A, Hancock D, et al. Algithm theetical basis document (ATBD) f global geolocated photons[R]. Washington: National Aeronautics Space Administration, 2021.
[8] A Neuenschwander, K Pitts. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247-259(2019).
[9] U C Herzfeld, B W McDonald, B F Wallin, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission. IEEE Transactions on Geoscience and Remote Sensing, 52, 2109-2125(2013).
[10] J Zhang, J Kerekes. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data. IEEE Geoscience and Remote Sensing Letters, 12, 726-730(2014).
[11] Y Ma, R Liu, S Li, et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar. Optics Express, 26, 24752-24762(2018).
[12] [12] Trujillo A P, Thurman H V. Essentials of Oceanography[M]. 11st ed. Translated by Zhang Ronghua, Li Xinzheng, Li Anchun. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
[13] [13] Mison J, Hancock D, Dickinson S, et al. Algithm theetical basis document (ATBD) f ocean surface height[R]. Maryl: Goddard Space Flight Center Greenbelt(NASA), 2021.
[14] T Markus, T Neumann, A Martino, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260-273(2017).
[15] [15] Zapevalov A, Pokazeev K, Chaplina T. Simulation of the Sea Surface f Remote Sensing[M]. Cham, Switzerl: Springer, 2021.
[16] W H Zhang, S Li, Y Ma, et al. Photon-counting lidar simulation method based on three-dimensional sea surface. Journal of Infrared and Millimeter Waves, 39, 483-490(2020).
[17] B Nilsson, O B Andersen, H Ranndal, et al. Consolidating ICESat-2 ocean wave characteristics with CryoSat-2 during the CRYO2 ICE campaign. Remote Sensing, 14, 1300(2022).
[18] B W Klotz, A Neuenschwander, L A Magruder. High-resolution ocean wave and wind characteristics determined by the ICESat-2 land surface algorithm. Geophysical Research Letters, 47, e2019GL085907(2020).
[19] [19] Hersbach H, Bell B, Berrisfd P, et al. ERA5 hourly data on single levels from 1979 to present[EBOL]. (20180614) [20211203]. https:cds.climate.copernicus.eucdsapp#!datasetreanalysisera5singlelevelstab=overview.
[20] [20] He Y J, Qiu Z F, Zhang B, et al. Wave Observation Technology[M]. Beijing: Science Press, 2015. (in Chinese)
[21] X Zhou, J Yang, S Li. Model of sea surface echos from spaceborne single photon lidar. Acta Optica Sinica, 41, 1928002(2021).
Get Citation
Copy Citation Text
Zhibiao Zhou, Hui Zhou, Yue Ma, Yue Song, Song Li. ICESat-2 lidar sea surface signal extraction and ocean wave element calculation[J]. Infrared and Laser Engineering, 2023, 52(2): 20220366
Category: Lasers & Laser optics
Received: May. 27, 2022
Accepted: --
Published Online: Mar. 13, 2023
The Author Email: