Chinese Physics B, Volume. 29, Issue 10, (2020)

Find slow dynamic modes via analyzing molecular dynamics simulation trajectories

Chuanbiao Zhang1 and Xin Zhou2、†
Author Affiliations
  • 1College of Physics and Electronic Engineering, Heze University, Heze 27405, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
  • show less
    Figures & Tables(2)
    (a) Time evolution of the RMSD of the Trp-cage to its native structure, the slow variables B1 and B2 obtained in the TM. Red line is time-window-smoothed one (Δ t = 200 ns). (b) Eigenvalue of the variance–covariance matrix of the trajectory-mapped points. The inset is the contribution of each basis function to the slow variables B1 and B2. (c) The free-energy landscape (in units of kBT) in the slow-variable space (B1, B2).
    Time-ordered similarity matrix of the MD trajectory. The similarity between two samples C(t2, t1) = B(t2) ⋅ B(t1). (b) The time-rearranged similarity matrix, suggesting three metastable states. (c) Kinetic transition network. Numbers near the arrows are the corresponding transition rates. The population of each state in the 208-μs MD trajectory is listed in bracket (which approaches to the equilibrium one, in consistent with the fact the folding and unfolding transitions occur more than ten times during the MD simulation). Residue TRP6 and PRO17 are shown in blue, GLY11 in red.
    Tools

    Get Citation

    Copy Citation Text

    Chuanbiao Zhang, Xin Zhou. Find slow dynamic modes via analyzing molecular dynamics simulation trajectories[J]. Chinese Physics B, 2020, 29(10):

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 18, 2020

    Accepted: --

    Published Online: Apr. 21, 2021

    The Author Email: Zhou Xin (xzhou@ucas.ac.cn)

    DOI:10.1088/1674-1056/abad24

    Topics