Chinese Journal of Quantum Electronics, Volume. 40, Issue 6, 974(2023)
Research on buildup and amplification of soliton pulse using dispersive Fourier transform technique
Fig. 1. Schematic illustration of the passive erbium-doped mode-locked fiber laser. (a) Conventional soliton fiber laser;(b) Dissipative soliton fiber laser; (c) Setup of the erbium-doped fiber laser amplifier and DFT pulse measurement
Fig. 2. Pulse parameters of mode-locked seed source. Top row: Conventional soliton; Bottom row: Dissipative soliton. (a), (d) Pulse train; (b), (e) Fundamental repetition RF spectrum (Bandwidth resolution: 100 Hz; Insert: 1 GHz span); (c), (f) Autocorrelation trace
Fig. 3. Pulse spectra. (a) Conventional soliton seed; (b) Amplified conventional soliton; (c) Dissipative soliton seed; (d) Amplified dissipative soliton. Black line: Logarithmic coordinate (OSA); Red line: Linear coordinate (OSA); Blue line: Linear coordinate (DFT)
Fig. 4. Spectral (up row) and single pulse energy (down row) evolution of conventional soliton.(a) Buildup process; (b) Amplification process
Fig. 5. Spectral (up row) and single pulse energy (down row) evolution of dissipative soliton.(a) Buildup process; (b) Amplification process
Fig. 6. Simulated spectra and chirp parameters. (a), (b) Conventional soliton; (c), (d) Dissipative soliton;(e), (f) Amplified conventional soliton; (g), (h) Amplified dissipative soliton
Fig. 7. Simulated evolution of soliton spectra versus amplification power. (a) Conventional soliton; (b) Dissipative soliton
|
Get Citation
Copy Citation Text
Shaoqing LIU, Yong ZHOU, Weiqing GAO. Research on buildup and amplification of soliton pulse using dispersive Fourier transform technique[J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 974
Category:
Received: Mar. 7, 2022
Accepted: --
Published Online: Dec. 22, 2023
The Author Email: ZHOU Yong (yong_zhou@hfut.edu.cn)