Optoelectronics Letters, Volume. 20, Issue 5, 272(2024)
Recent advances in MXene for terahertz applications*
[1] [1] XIE Q, GUO L H, ZHANG Z X, et al. Versatile tera- hertz graphene metasurface based on plasmon-induced transparency[J]. Applied surface science, 2022, 604: 154575.
[2] [2] KUMAR P, YU S, SHAHZAD F, et al. Ultrahigh elec- trically and thermally conductive self-aligned gra- phene/polymer composites using large-area reduced graphene oxides[J]. Carbon, 2016, 101: 120-128.
[3] [3] BATI A S R, HAO M, MACDONALD T J, et al. 1D-2Dsynergistic MXene-nanotubes hybrids for efficient perovskite solar cells[J]. Small, 2021, 17(32): 2101925.
[4] [4] GUO Z, GAO L, XU Z, et al. High electrical conductiv- ity 2D MXene serves as additive of perovskite for effi- cient solar cells[J]. Small, 2018, 14(47): 1802738.
[5] [5] WANG J, CAI Z, LIN D, et al. Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells[J]. ACS applied materials & in- terfaces, 2021, 13(27): 32495-32502.
[6] [6] HANGYO M. Development and future prospects of terahertz technology[J]. Japanese journal of applied physics, 2015, 54(12): 120101.
[7] [7] PAWAR A Y, SONAWANE D D, ERANDE K B, et al. Terahertz technology and its applications[J]. Drug in- vention today, 2013, 5(2): 157-163.
[8] [8] GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al. Broadband image sensor array based on gra- phene-CMOS integration[J]. Nature photonics, 2017, 11(6): 366-371.
[9] [9] SUN L, ZHAO L, PENG R Y. Research progress in the effects of terahertz waves on biomacromolecules[J]. Military medical research, 2021, 8(1): 1-8.
[10] [10] KOENIG S, LOPEZ-DIAZ D, ANTES J, et al. Wireless sub-THz communication system with high data rate[J]. Nature photonics, 2013, 7(12): 977-981.
[11] [11] GONG A, QIU Y, CHEN X, et al. Biomedical applica- tions of terahertz technology[J]. Applied spectroscopy reviews, 2020, 55(5): 418-438.
[12] [12] TANG X, GUO X, WU W, et al. 2D metal carbides and nitrides (MXenes) as high-performance electrode mate- rials for lithium-based batteries[J]. Advanced energy materials, 2018, 8(33): 1801897.
[13] [13] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced materials, 2018, 30(52): 1804779.
[14] [14] BARSOUM M W, RL-RAGHY T. The MAX phases: unique new carbide and nitride materials: ternary ce- ramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and light weight[J]. American scientist, 2001, 89(4): 334-343.
[15] [15] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary com- pounds[J]. International materials reviews, 2011, 56(3): 143-166.
[16] [16] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS nano, 2012, 6(2): 1322-1331.
[17] [17] ZHAN X, SI C, ZHOU J, et al. MXene and MXene-based composites: synthesis, properties and environment-related applications[J]. Nanoscale hori- zons, 2020, 5(2): 235-258.
[18] [18] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253.
[19] [19] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced materials, 2014, 26(7): 992-1005.
[20] [20] LU J, PERSSON I, LIND H, et al. Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations[J]. Nanoscale advances, 2019, 1(9): 3680-3685.
[21] [21] KAMYSBAYEV V, FILATOV A S, HU H, et al. Cova- lent surface modifications and superconductivity of two dimensional metal carbide MXenes[J]. Science (New York, N.Y.), 2020, 369(6506): 979-983.
[22] [22] JHON T I, LEE J H, JHON Y M. Surface termination effects on the terahertz-range optical responses of two-dimensional MXenes: density functional theory study[J]. Materials today communications, 2022, 32: 103917.
[23] [23] KHAZAEI K, ARAI M, SASAKI T, et al. OH-terminated two-dimensional transition metal car- bides and nitrides as ultralow work function materi- als[J]. Physical review B, 2015, 92(7): 075411.
[24] [24] LIU Y, XIAO H, WILLIAM A G. Schottky-barrier-free contacts with two-dimensional semiconductors by sur- face-engineered MXenes[J]. Journal of the American chemical society, 2016, 138(49): 15853-15856.
[25] [25] KUANG PY, LOW J X, CHENG B, et al. MXene-based photocatalysts[J]. Journal of materials science & tech- nology, 2020, 56: 18-44.
[26] [26] JIANG X, LIU S, LIANG W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH)[J]. Laser & photonics reviews, 2018, 12(2): 1700229.
[27] [27] ZHANG T, CHU H, LI Y, et al. Third-order optical nonlinearity in Ti2C MXene for Q-switching operation at 1-2 μm[J]. Optical materials, 2022, 124: 112054.
[28] [28] HU T, ZHANG H, WANG J, et al. Anisotropic elec- tronic conduction in stacked two-dimensional titanium carbide[J]. Scientific reports, 2015, 5(1): 16329.
[29] [29] REN C E, ZHAO M Q, MAKARYAN T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage[J]. ChemE- lectroChem, 2016, 3(5): 689-693.
[30] [30] ZHANG T, PAN L, TANG H, et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination[J]. Journal of alloys and compounds, 2017, 695: 818-826.
[31] [31] FENG T, HUANG W, ZHU H, et al. Optical-transparent self-assembled MXene film with high-efficiency tera- hertz reflection modulation[J]. ACS applied materials & interfaces, 2021, 13(8): 10574-10582.
[32] [32] SHUI W, LI J, WANG H, et al. Ti3C2Tx MXene sponge composite as broadband terahertz absorber[J]. Ad- vanced optical materials, 2020, 8(21): 2001120.
[33] [33] LIN Z, LIU J, PENG W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS nano, 2020, 14(2): 2109-2117.
[34] [34] LIU F, ZHOU A, CHEN J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties[J]. Applied surface science, 2017, 416: 781-789.
[35] [35] SHAHZAD F, ALHABEB M, HATTER M, et al. Elec- tromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353: 1137-1140.
[36] [36] TITOVA L V, LI G, NATU V, et al. 2D MXenes: Tera- hertz properties and applications[C]//2020 45th In- ternational Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), November 8-13, 2020, Online. New York: IEEE, 2020: 1-2.
[37] [37] CHOI G, SHAHAZAD F, BAHK Y M, et al. Enhanced terahertz shielding of MXenes with nano-metamaterials[J]. Advanced optical materials, 2018, 6(5): 1701076.
[38] [38] ANISHA A, KUMAR D S. Performance analysis of Ta4C3 MXene based optically transparent patch an- tenna for terahertz communications[J]. Optik, 2022, 260: 168959.
[39] [39] JHON Y I, SEO M, JHON Y M. First-principles study of a MXene terahertz detector[J]. Nanoscale, 2018, 10(1): 69-75.
[40] [40] LI G, MONTAZERI K, ISMAIL M K, et al. Terahertz polarizers based on 2D Ti3C2Tz MXene: spin cast from aqueous suspensions[J]. Advanced photonics research, 2020, 1(2): 2000084.
[41] [41] ZHANG M, WANG X X, CAO W Q, et al. Electro- magnetic functions of patterned 2D materials for mi- cro-nano devices covering GHz, THz, and optical fre- quency[J]. Advanced optical materials, 2019, 7(19): 1900689.
[42] [42] CHEN Z, CHEN X, TAO L, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation[J]. Nature communications, 2018, 9(1): 4909.
[43] [43] WEN Q Y, TIAN W, MAO Q, et al. Graphene based all-optical spatial terahertz modulator[J]. Scientific re- ports, 2014, 4(1): 7409.
[44] [44] DING Y, ZHU X, XIAO S, et al. Effective elec- tro-optical modulation with high extinction ratio by a graphene-silicon microring resonator[J]. Nano letters, 2015, 15(7): 4393-4400.
[45] [45] TANG T, LI J, LUO L, et al. Magneto-optical modula- tion of photonic spin Hall effect of graphene in terahertz region[J]. Advanced optical materials, 2018, 6(7): 1701212.
[46] [46] TASOLAMPROU A C, KOULOUKLIDIS A D, DASKALAKI C, et al. Experimental demonstration of ultrafast THz modulation in a graphene-based thin film absorber through negative photoinduced conductiv- ity[J]. ACS photonics, 2019, 6(3): 720-727.
[47] [47] LI J, LI J, ZHENG C. Dynamic control of reflective chiral terahertz metasurface with a new application de- veloping in full grayscale near field imaging[J]. Carbon, 2021, 172: 189-199.
[48] [48] LIU Y, LI X, YANG T, et al. Flexible broadband tera- hertz modulation based on strain-sensitive MXene ma- terial[J]. Frontiers in physics, 2021, 9: 670972.
[49] [49] FENG T, HU Y, CHANG X, et al. Highly flexible Ti3C2Tx MXene/waterborne polyurethane membranes for high-efficiency terahertz modulation with low inser- tion loss[J]. ACS applied materials & interfaces, 2023, 15(5): 7592-7601.
[50] [50] THOMASSIN J, LOU X, PAGNOULLE C, et al. Mul- tiwalled carbon nanotube/poly (ε-caprolactone) nano- composites with exceptional electromagnetic interfer- ence shielding properties[J]. The journal of physical chemistry C, 2007, 111(30): 11186-11192.
[51] [51] MA W, CHEN H, HOU S, et al. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band[J]. ACS applied materials & interfaces, 2019, 11(28): 25369-25377.
[52] [52] CHEN M, LIU J, CHAO D, et al. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries[J]. Nano energy, 2014, 9: 364-372.
[53] [53] XIAO X, WANG H, URBANKOWSKI P, et al. Topochemical synthesis of 2D materials[J]. Chemical society reviews, 2018, 47(23): 8744-8765.
[54] [54] ZHANG X T, LIU D Y, MA Y L, et al. Su- per-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation per- formance[J]. Applied surface science, 2017, 422: 116-124.
[55] [55] SMITH R M, ARNOLD M A. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges[J]. Applied spectroscopy reviews, 2011, 46(8): 636-679.
[56] [56] LUO M, GUO J, SHUI W, et al. Ti3C2Tx MXene-based superhydrophobic broadband terahertz absorber with large pore-size foam architecture[J]. Advanced materi- als interfaces, 2023, 10(2): 2201767.
[57] [57] BAI Y, QIN F, LU Y. Flexible and lightweight Ni/MXene decorated polyurethane sponge composite with sensitive strain sensing performance for ultrahigh terahertz absorption[J]. Advanced optical materials, 2022, 10(4): 2101868.
[58] [58] FEI Y, WANG X, WANG F, et al. Covalent coupling induced-polarization relaxation in MXene-based tera- hertz absorber for realizing dual band absorption[J]. Chemical engineering journal, 2023, 461: 142049.
[59] [59] LI S, XU S, PAN K, et al. Ultra-thin broadband tera- hertz absorption and electromagnetic shielding proper- ties of MXene/rGO composite film[J]. Carbon, 2022, 194: 127-139.
[60] [60] BAAH M, PADDUBSKAYA A, NOVITSKY A, et al. All-graphene perfect broadband THz absorber[J]. Car- bon, 2021, 185: 709-716.
[61] [61] WAN H, LIU N, TANG J, et al. Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorp-tion and shielding[J]. ACS nano, 2021, 15(8):13646-13652.
[62] [62] NASEER A, MUMTAZ M, RAFFI M, et al. Rein- forcement of electromagnetic wave absorption charac- teristics in PVDF-PMMA nanocomposite by intercala- tion of carbon nanofibers[J]. Electronic materials let- ters, 2019, 15: 201-207.
[63] [63] LIU L, DAS A, MEGARIDIS C M. Terahertz shielding of carbon nanomaterials and their composites-a review and applications[J]. Carbon, 2014, 69: 1-16.
[64] [64] MAY, CHEN Y. Three-dimensional graphene networks: synthesis, properties and applications[J]. National sci- ence review, 2015, 2: 40-53.
[65] [65] CONG H P, CHEN J F, YU S H, et al. Graphene-based macroscopic assemblies and architectures: an emerging material system[J]. Chemical society reviews, 2014, 43(21): 7295-7325.
[66] [66] SHI S, QIAN B, WU X, et al. Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels[J]. Angewandte che- mie international edition, 2019, 58(50): 18171-18176.
[67] [67] ZHU Y, LIU J, GUO T, et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity to- ward absorption-dominated electromagnetic-interference shielding[J]. ACS nano, 2021, 15(1): 1465-1474.
[68] [68] WU Z, SHANG T, DENG Y, et al. The assembly of MXenes from 2D to 3D[J]. Advanced science, 2020, 7: 1903077.
[69] [69] LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small, 2018, 14: 1802479.
[70] [70] SUN J Y, ZHAO X, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489: 133-136.
[71] [71] FEIG V R, TRAN H, LEE M, et al. Mechanically tun- able conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature communication, 2018, 9: 2740.
[72] [72] ZOU H, YI P, XU W, et al. Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness[J]. Chemical engineering journal, 2023, 461: 141856.
[73] [73] ZOU Q, SHI C, LIU B, et al. Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2Tx MXene fiber membranes[J]. Nanotechnology, 2021, 32(41): 415204.
[74] [74] ZOU Q, GUO W, ZHANG L, et al. MXene-based ul- tra-thin film for terahertz radiation shielding[J]. Nanotechnology, 2020, 31(50): 505710.
[75] [75] HUSSAIN K, MEHBOOB S, AHMAD I, et al. Tera- hertz time-domain spectroscopy of thin and flexible CNT-modified MXene/polymer composites[J]. Applied physics A, 2021, 127(5): 1-8.
[76] [76] LI G, AMER N, HAFEZ H A, et al. Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses[J]. Nano letters, 2019, 20(1): 636-643.
[77] [77] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature photonics, 2007, 1(2): 97-105.
[78] [78] ANAND S, DARAK M S, KUMAR D S. Investigations on indium tin oxide based optically transparent terahertz E-shaped patch antenna[J]. Advances in signal process- ing and intelligent, 2014, 264: 195-202.
[79] [79] DONG L, CHU H, LI Y, et al. Surface functionalization of Ta4C3 MXene for broadband ultrafast photonics in the near-infrared region[J]. Applied materials today, 2022, 26: 101341.
[80] [80] RAFIEERAD A, AMIRI A, SEQUIERA G L, et al. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for super- capacitor electrodes[J]. Advanced functional materials, 2021: 2100015.
[81] [81] LIN H, WANG Y, GAO S, et al. Theranostic 2D tanta- lum carbide (MXene)[J]. Advanced materials, 2018, 30(4): 1703284.
[82] [82] FENG W, LUO H, YU W, et al. Ti3C2 MXene: a prom- ising microwave absorbing material[J]. RSC advances, 2018, 8(5): 2398-2403.
[83] [83] BAIG S E, BOLAND J L, DAMRY D A, et al. An ul- trafast switchable terahertz polarization modulator based on III-V semiconductor nanowires[J]. Nano let- ters, 2017, 17(4): 2603-2610.
Get Citation
Copy Citation Text
ZHANG Yongzhi1, JIANG Jiuxing2, YAO Yongtao3, and HE Xunjun1. Recent advances in MXene for terahertz applications*[J]. Optoelectronics Letters, 2024, 20(5): 272
Received: May. 18, 2023
Accepted: Oct. 8, 2023
Published Online: Aug. 23, 2024
The Author Email: Xunjun1 and HE (hexunjun@hrbust.edu.cn)