Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2412(2024)

Research Progress on the Application of Machine Learning in Crystal Growth

YANG Mingliang1...2,3, WANG Ruixian1,2,3, SUN Guihua1,3, WANG Xiaofei1,3, DOU Renqin1,3, HE Yi1,2,3, and ZHANG Qingli13,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(79)

    [1] [1] ZHANG Shouqing. Chin Sci Bull, 1964(9): 787-797.

    [2] [2] ZHENG Yanqing, SHI Erwei, LI Wenjun, et al. J Inorg Mater, 1999, 14(3): 321-332.

    [3] [3] SUN Deyun. Study on the growth mechanism of cerium carbonate crystals simulated by AIMD[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.

    [4] [4] YANG Jinfeng, SUN Jun, QIN Juan, et al. J Synth Cryst, 2022, 51(9/10): 1541-1559.

    [5] [5] WANG J Y, YU H H, WU Y C, et al. Recent developments in functional crystals in China[J]. Engineering, 2015, 1(2): 192-210.

    [6] [6] XUE D F, SUN C T. Study on the crystallization process of function inorganic crystal materials[J]. Sci Sin-Tech, 2014, 44(11): 1123-1136.

    [7] [7] MA Z Z, CHEN Y Z, HE Y, et al. Growth, thermal properties and laser performance of Er, Pr:Y2.8Sc1Al4.2O12: A promising multi-wavelength laser crystal[J]. Appl Phys A, 2021, 127(7): 1-9.

    [8] [8] DING S J, REN H, ZOU Y, et al. Single crystal growth and property investigation of Dy3+ and Tb3+ co-doped Gd3Sc2Al3O12 (GSAG): Multiple applications for GaN blue LD pumped all-solid-state yellow lasers and UV or blue light chip excited solid-state lighting[J]. J Mater Chem C, 2021, 9(30): 9532-9538.

    [9] [9] CHEN X F, YANG X L, XIE X J, et al. Research progress of large size SiC single crystal materials and devices[J]. Light Sci Appl, 2023, 12(1): 28.

    [10] [10] ZHANG C Q, WANG J Y, HU X B, et al. Growth of large K2Al2B2O7 crystals[J]. J Cryst Growth, 2002, 235(1/4): 1-4.

    [11] [11] CHERNOV A A, MüLLER KRUMBHAAR H. Modern theory of crystal growth I[M]. Springer Science & Business Media, 2012.

    [12] [12] TILLER W A. The science of crystallization: macroscopic phenomena and defect generation[M]. Cambridge: Cambridge University Press, 1991.

    [17] [17] XU Yadong. J Synth Cryst, 2022, 51(9/10): 1519-1522.

    [18] [18] YAO T S, TANG C Y, YANG M, et al. Machine learning to instruct single crystal growth by flux method[J]. Chin Phys Lett, 2019, 36(6): 068101.

    [19] [19] MIAO L, WANG L W. Liquid to crystal Si growth simulation using machine learning force field[J]. J Chem Phys, 2020, 153(7): 074501.

    [20] [20] ZHANG J M, HARMAN M, MA L, et al. Machine learning testing: Survey, landscapes and horizons[J]. IEEE Trans Softw Eng, 2022, 48(1): 1-36.

    [21] [21] AMERSHI S, BEGEL A, BIRD C, et al. Software engineering for machine learning: A case study[C]//2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). Montreal, QC, Canada. IEEE, 2019: 291-300.

    [22] [22] KIM S, NOH J, GU G H, et al. Generative adversarial networks for crystal structure prediction[J]. ACS Cent Sci, 2020, 6(8): 1412-1420.

    [23] [23] WOODLEY S M. Prediction of crystal structures using evolutionary algorithms and related techniques[M]//Applications of Evolutionary Computation in Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 95-132.

    [24] [24] REVARD B C, TIPTON W W, HENNIG R G. Structure and stability prediction of compounds with evolutionary algorithms[J]. Top Curr Chem, 2014, 345: 181-222.

    [25] [25] LIANG Jing, LIU Rui, QU Boyang, et al. J Zhengzhou Univ Eng Sci, 2018, 39(3): 15-21.

    [26] [26] HANSEN N. The CMA evolution strategy: A comparing review[M]// Towards a New Evolutionary Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 75-102.

    [27] [27] LIEPINS G E, HILLIARD M R. Genetic algorithms: foundations and applications[J]. Ann Oper Res, 1989, 21(1): 31-57.

    [28] [28] GREFENSTETTE J J. Genetic algorithms and machine learning[C]// Proceedings of the sixth annual conference on Computational learning theory. Santa Cruz, California, USA. New York: ACM, 1993: 3-4.

    [29] [29] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intell, 2007, 1(1): 33-57.

    [30] [30] JAIN M, SAIHIPAL V, SINGH N, et al. An overview of variants and advancements of PSO algorithm[J]. Appl Sci, 2022, 12(17): 8392.

    [31] [31] LI G Q, WANG T, CHEN Q, et al. A survey on particle swarm optimization for association rule mining[J]. Electronics, 2022, 11(19): 3044.

    [32] [32] ELSHEIKH A H, ABD ELAZIZ M. Review on applications of particle swarm optimization in solar energy systems[J]. Int J Environ Sci Technol, 2019, 16(2): 1159-1170.

    [33] [33] HU J J, YANG W H, DONG R Z, et al. Contact map based crystal structure prediction using global optimization[J]. CrystEngComm, 2021, 23(8): 1765-1776.

    [34] [34] STORN R, PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. J Glob Optim, 1997, 11(4): 341-359.

    [35] [35] ZOU J M, HAN Y, SO S S. Overview of artificial neural networks[M]// Artificial Neural Networks, 2008: 14-22.

    [36] [36] ZHANG Z H. Artificial neural network[M]//Multivariate Time Series Analysis in Climate and Environmental Research. Cham: Springer, 2018: 1-35.

    [37] [37] DONGARE A, KHARDE R R, KACHARE A D. Introduction to artificial neural network[J]. International J Eng Innov Technol (IJEIT), 2012, 2(1): 189-194.

    [38] [38] WANG Na, WANG Jingkang, FENG Han, et al. Chemical Industry and Engineering, 2023, 40(1): 2-14.

    [39] [39] CHENG G J, GONG X G, YIN W J. Crystal structure prediction by combining graph network and optimization algorithm[J]. Nat Commun, 2022, 13(1): 1492.

    [40] [40] GRASER J, KAUWE S K, SPARKS T D. Machine learning and energy minimization approaches for crystal structure predictions: A review and new horizons[J]. Chem Mater, 2018, 30(11): 3601-3612.

    [41] [41] RYAN K, LENGYEL J, SHATRUK M. Crystal structure prediction via deep learning[J]. J Am Chem Soc, 2018, 140(32): 10158-10168.

    [42] [42] LIANG H T, STANEV V, KUSNE A G, et al. CRYSPNet: Crystal structure predictions via neural networks[J]. Phys Rev Materials, 2020, 4(12): 123802.

    [43] [43] GLASS C W, OGANOV A R, HANSEN N. USPEX—evolutionary crystal structure prediction[J]. Comput Phys Commun, 2006, 175(11/12): 713-720.

    [44] [44] WANG Y C, LV J A, ZHU L, et al. CALYPSO: A method for crystal structure prediction[J]. Comput Phys Commun, 2012, 183(10): 2063-2070.

    [45] [45] YAMASHITA T, KANEHIRA S, SATO N, et al. CrySPY: A crystal structure prediction tool accelerated by machine learning[J]. Sci Technol Adv Mater Meth, 2021, 1(1): 87-97.

    [46] [46] CURTIS F, LI X Y, ROSE T, et al. GAtor: A first-principles genetic algorithm for molecular crystal structure prediction[J]. J Chem Theory Comput, 2018, 14(4): 2246-2264.

    [47] [47] NOUIRA A, SOKOLOVSKA N, CRIVELLO J C. Crystalgan: Learning to discover crystallographic structures with generative adversarial networks. arXiv. https://arxiv.org/abs/1810.11203 (2018).

    [48] [48] LONIE D C, ZUREK E. XtalOpt: An open-source evolutionary algorithm for crystal structure prediction[J]. Comput Phys Commun, 2011, 182(2): 372-387.

    [49] [49] SONG Y Q, SIRIWARDANE E M D, ZHAO Y, et al. Computational discovery of new 2D materials using deep learning generative models[J]. ACS Appl Mater Interfaces, 2021, 13(45): 53303-53313.

    [50] [50] LEE I, KIM J, PARK T, et al. Predicting mechanical properties of newly generated two-dimensional materials with minimum uncertainty[J]. Mater Today Adv, 2023, 18: 100374.

    [51] [51] KUKLIN M S, KARTTUNEN A J. Crystal structure prediction of magnetic transition-metal oxides by using evolutionary algorithm and hybrid DFT methods[J]. J Phys Chem C Nanomater Interfaces, 2018, 122(43): 24949-24957.

    [52] [52] PAKHNOVA M, KRUGLOV I, YANILKIN A, et al. Search for stable cocrystals of energetic materials using the evolutionary algorithm USPEX[J]. Phys Chem Chem Phys, 2020, 22(29): 16822-16830.

    [53] [53] ZHANG W W, OGANOV A R, GONCHAROV A F, et al. Unexpected stable stoichiometries of sodium chlorides[J]. Science, 2013, 342(6165): 1502-1505.

    [54] [54] WANG Y C, LV J, GAO P Y, et al. Crystal structure prediction via efficient sampling of the potential energy surface[J]. Acc Chem Res, 2022, 55(15): 2068-2076.

    [55] [55] GAO B, GAO P Y, LU S H, et al. Interface structure prediction via CALYPSO method[J]. Sci Bull, 2019, 64(5): 301-309.

    [56] [56] LU S H, WANG Y C, LIU H Y, et al. Self-assembled ultrathin nanotubes on diamond (100) surface[J]. Nat Commun, 2014, 5: 3666.

    [57] [57] YANG J N, XIAO Y, KUANG X Y. The local structure and electronic properties of Ho3+-doped BaY2F8: A first-principles method[J]. Mater Chem Phys, 2023, 298: 127459.

    [58] [58] MIYAZAWA H, LIU L J, KAKIMOTO K. Numerical analysis of influence of crucible shape on interface shape in a unidirectional solidification process[J]. J Cryst Growth, 2008, 310(6): 1142-1147.

    [59] [59] LI Z Y, LIU L J, ZHANG Y F, et al. Preservation of seed crystals in feedstock melting for cast quasi-single crystalline silicon ingots[J]. Int J Photoenergy, 2013, 2013: 1-7.

    [60] [60] FüHNER T, JUNG T. Use of genetic algorithms for the development and optimization of crystal growth processes[J]. J Cryst Growth, 2004, 266(1/3): 229-238.

    [61] [61] SU J A, CHEN X J, LI Y A, et al. A niching genetic algorithm applied to optimize a SiC-bulk crystal growth system[J]. J Cryst Growth, 2017, 468: 914-918.

    [62] [62] LIIRI M, ENQVIST Y, KALLAS J, et al. CFD modelling of single crystal growth of potassium dihydrogen phosphate (KDP) from binary water solution at 30 ℃[J]. J Cryst Growth, 2006, 286(2): 413-423.

    [63] [63] LI Z X, SMIRNOV A. Application of computer modeling to pulling rate and productivity of Czochralski pullers in PV Si crystal growth[J]. J Cryst Growth, 2023, 611: 127178.

    [64] [64] RYU J H, LEE W J, LEE Y C, et al. CFD analysis for effects of the crucible geometry on melt convection and growth behavior during sapphire single crystal growth by Kyropoulos process[J]. J Korean Cryst Growth Cryst Technol, 2012, 22(3): 115-121.

    [65] [65] MU Honghe, WANG Pengfei, SHI Yufeng, et al. J Inorg Mater (in Chinese), 2023, 38(3): 288-295.

    [66] [66] BOUCETTA A, KUTSUKAKE K, KOJIMA T, et al. Application of artificial neural network to optimize sensor positions for accurate monitoring: An example with thermocouples in a crystal growth furnace[J]. Appl Phys Express, 2019, 12(12): 125503.

    [67] [67] HAO Peiyao, ZHENG Lili, ZHANG Hui, et al. J Synth Cryst, 2022, 51(8): 1323-1336.

    [68] [68] YU W C, ZHU C, TSUNOOKA Y, et al. Geometrical design of a crystal growth system guided by a machine learning algorithm[J]. CrystEngComm, 2021, 23(14): 2695-2702.

    [69] [69] KUTSUKAKE K, NAGAI Y T, BANBA H. Virtual experiments of Czochralski growth of silicon using machine learning: Influence of processing parameters on interstitial oxygen concentration[J]. J Cryst Growth, 2022, 584: 126580.

    [70] [70] ASADIAN M, SEYEDEIN S H, ABOUTALEBI M R, et al. Optimization of the parameters affecting the shape and position of crystal-melt interface in YAG single crystal growth[J]. J Cryst Growth, 2009, 311(2): 342-348.

    [71] [71] ZHANG Jing, PAN Yani, LIU Ding, et al. J Synth Cryst, 2018, 47(12): 2429-2435.

    [72] [72] TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550.

    [73] [73] QI X F, MA W C, DANG Y F, et al. Optimization of the melt/crystal interface shape and oxygen concentration during the Czochralski silicon crystal growth process using an artificial neural network and a genetic algorithm[J]. J Cryst Growth, 2020, 548: 125828.

    [74] [74] LIU Ding, ZHAO Xiaoguo, ZHAO Yue. Contr Theory Appl, 2017, 34(1): 1-12.

    [75] [75] ZHANG N, LIU D, WAN Y. Numerical modeling and control of the dynamic single silicon crystal growth process[J]. IEEE Trans Semicond Manuf, 2021, 34(1): 94-103.

    [76] [76] SONG D J, TAN B X, LIU J C. Improvement of crystal growth control system[J]. Adv Mater Res, 2012, 433-440: 7569-7573.

    [77] [77] WANG Qing, JIANG Lei, ZHANG Tingman. J Synth Cryst, 2011, 40(5): 1353-1357.

    [78] [78] LI Jianhong, JI Wengang, SONG Xing, et al. J Synth Cryst, 2019, 48(8): 1438-1444.

    [79] [79] REN Junchao, LIU Ding, WAN Yin. Acta Autom Sin, 2020, 46(5): 1004-1016.

    [80] [80] LIN Guangwei, WANG Shan, ZHANG Xiya, et al. J Synth Cryst (in Chinese), 2022, 51(2): 229-241.

    [81] [81] LIU D, ZHANG N, JIANG L, et al. Nonlinear generalized predictive control of the crystal diameter in CZ-Si crystal growth process based on stacked sparse autoencoder[J]. IEEE Trans Contr Syst Technol, 2020, 28(3): 1132-1139.

    [82] [82] WAN Y, LIU D, REN J C. Iterative learning-based predictive control method for electronic grade silicon single crystal batch process[J]. IEEE Trans Semicond Manuf, 2023, 36(2): 239-250.

    [83] [83] DANG Y F, ZHU C, IKUMI M, et al. Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth[J]. CrystEngComm, 2021, 23(9): 1982-1990.

    Tools

    Get Citation

    Copy Citation Text

    YANG Mingliang, WANG Ruixian, SUN Guihua, WANG Xiaofei, DOU Renqin, HE Yi, ZHANG Qingli. Research Progress on the Application of Machine Learning in Crystal Growth[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2412

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 21, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Qingli ZHANG (zql@aiofm.ac.cn)

    DOI:10.14062/j.issn.0454-5648.20230621

    Topics