Laser & Optoelectronics Progress, Volume. 60, Issue 16, 1600002(2023)

Overview of LiDAR Technology on Silicon Substrate

Qin Yang1, Xiaolin Chen1、*, Cheng Zeng1, Shiyue Xu1, Feng Yang1,2, and Jianbo Gao1
Author Affiliations
  • 1Southwest Institute of Technology and Physics, Chengdu 610041, Sichuan, China
  • 2College of Electronic Information, Sichuan University, Chengdu 610065, Sichuan, China
  • show less
    References(66)

    [1] Liu J Y. The distance measurement evolution in 60 years[J]. Hydrographic Surveying and Charting, 30, 74-78(2010).

    [2] Molebny V, McManamon P F, Steinvall O et al. Laser radar: historical prospective: from the East to the West[J]. Optical Engineering, 56, 031220(2016).

    [3] Dai Y J[M]. Laser radar technology(2010).

    [4] Eitel J U H, Höfle B, Vierling L A et al. Beyond 3-D: the new spectrum of lidar applications for earth and ecological sciences[J]. Remote Sensing of Environment, 186, 372-392(2016).

    [5] Liu Z L, Barlow J F, Chan P W et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 11, 2522(2019).

    [6] Royo S, Ballesta-Garcia M. An overview of lidar imaging systems for autonomous vehicles[J]. Applied Sciences, 9, 4093(2019).

    [7] Yu A W, Troupaki E, Li S X et al. Orbiting and in-situ lidars for earth and planetary applications[C], 3479-3482(2020).

    [8] Di H G, Hua D X. Research status and progress of Lidar for atmosphere in China(Invited)[J]. Infrared and Laser Engineering, 50, 20210032(2021).

    [9] Roriz R, Cabral J, Gomes T. Automotive LiDAR technology: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 23, 6282-6297(2022).

    [10] Li K P, He Y, Hou C H et al. Detection of chlorophyll profiles from coastal to oceanic water by dual-wavelength ocean lidar[J]. Chinese Journal of Lasers, 48, 2010002(2021).

    [11] Gong W, Shi S, Chen B W et al. Development and application of airborne hyperspectral LiDAR imaging technology[J]. Acta Optica Sinica, 42, 1200002(2022).

    [12] Hecht J. Lidar for self-driving cars[J]. Optics and Photonics News, 29, 26-33(2018).

    [13] Kukkala V K, Tunnell J, Pasricha S et al. Advanced driver-assistance systems: a path toward autonomous vehicles[J]. IEEE Consumer Electronics Magazine, 7, 18-25(2018).

    [14] Warren M E. Automotive LIDAR technology[C], C254-C255(2019).

    [15] Li Y, Ibanez-Guzman J. Lidar for Autonomous Driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 37, 50-61(2020).

    [16] Tulldahl H M, Larsson H. Lidar on small UAV for 3D mapping[J]. Proceedings of SPIE, 9250, 925009(2014).

    [17] Pogačnik L, Munih M. Towards a multi-perspective time of flight laser ranging device based on mirrors and prisms[J]. Applied Sciences, 12, 7121(2022).

    [18] Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 46, 190218(2019).

    [19] Raj T, Hashim F H, Huddin A B et al. A survey on LiDAR scanning mechanisms[J]. Electronics, 9, 741(2020).

    [20] Wang D K, Watkins C, Xie H K. MEMS mirrors for LiDAR: a review[J]. Micromachines, 11, 456(2020).

    [21] Sun X C, Zhang L X, Zhang Q H et al. Si photonics for practical LiDAR solutions[J]. Applied Sciences, 9, 4225(2019).

    [22] Siew S Y, Li B, Gao F et al. Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology, 39, 4374-4389(2021).

    [23] Margalit N, Xiang C, Bowers S M et al. Perspective on the future of silicon photonics and electronics[J]. Applied Physics Letters, 118, 220501(2021).

    [24] Wang P F, Luo G Z, Pan J Q. Silicon-based integrated LiDAR technology[J]. ZTE Technology Journal, 26, 43-50(2020).

    [25] Hsu C Y, Yiu G Z, Chang Y C. Free-space applications of silicon photonics: a review[J]. Micromachines, 13, 990(2022).

    [26] Delori F C, Webb R H, Sliney D H et al. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices[J]. Journal of the Optical Society of America A, 24, 1250-1265(2007).

    [27] Amann M C, Bosch T M, Lescure M et al. Laser ranging: a critical review of unusual techniques for distance measurement[J]. Optical Engineering, 40, 10-19(2001).

    [28] Lum D J. Ultrafast time-of-flight 3D LiDAR[J]. Nature Photonics, 14, 2-4(2020).

    [29] Behroozpour B, Sandborn P A M, Quack N et al. Electronic-photonic integrated circuit for 3D microimaging[J]. IEEE Journal of Solid-State Circuits, 52, 161-172(2017).

    [30] Philippov V, Codemard C, Jeong Y et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 29, 2590-2592(2004).

    [31] Xu Z Y, Yu F X, Qiu B W et al. Coherent random-modulated continuous-wave LiDAR based on phase-coded subcarrier modulation[J]. Photonics, 8, 475(2021).

    [32] Sambridge C S, Spollard J T, Sutton A J et al. Detection statistics for coherent RMCW LiDAR[J]. Optics Express, 29, 25945-25959(2021).

    [33] Spollard J T, Roberts L E, Sambridge C S et al. Mitigation of phase noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave LiDAR[J]. Optics Express, 29, 9060-9083(2021).

    [34] Xu Z Y, Zhang H X, Chen K et al. Progress of frequency-modulated continuous-wave lidars[J]. Vacuum Electronics, 18-26, 40(2019).

    [35] Lu Z Y, Ge C F, Wang Z Y et al. Basics and developments of frequency modulation continuous wave LiDAR[J]. Opto-Electronic Engineering, 46, 190038(2019).

    [36] Agishev R, Gross B, Moshary F et al. Range-resolved pulsed and CWFM lidars: potential capabilities comparison[J]. Applied Physics B, 85, 149-162(2006).

    [37] Massaro R D, Anderson J E, Nelson J D et al. A comparative study between frequency-modulated continous wave LADAR and linear LiDAR[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1, 233-239(2014).

    [38] Zhang T, Qu X H, Zhang F M. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Optics Express, 26, 11519-11528(2018).

    [39] Baumann E, Giorgetta F R, Coddington I et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Optics Letters, 38, 2026-2028(2013).

    [40] Zheng J H, Jia L H, Zhai Y R et al. High-precision silicon-integrated frequency-modulated continuous wave LiDAR calibrated using a microresonator[J]. ACS Photonics, 9, 2783-2791(2022).

    [41] Gao S, Hui R. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection[J]. Optics Letters, 37, 2022-2024(2012).

    [42] Zhang C, Lindner S, Antolović I M et al. A 30-frames/s, 252×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming[J]. IEEE Journal of Solid-State Circuits, 54, 1137-1151(2019).

    [43] Kostamovaara J, Jahromi S, Hallman L et al. Solid-state pulsed time-of-flight 3-D range imaging using CMOS SPAD focal plane array receiver and block-based illumination techniques[J]. IEEE Photonics Journal, 14, 6817911(2022).

    [44] Hu J, Liu B Z, Ma R et al. A 32 × 32-pixel flash LiDAR sensor with noise filtering for high-background noise applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 69, 645-656(2022).

    [45] Rablau C I. Lidar: a new self-driving vehicle for introducing optics to broader engineering and non-engineering audiences[J]. Proceedings of SPIE, 11143, 111430C(2019).

    [46] Hao Q, Tao Y, Cao J et al. Development of pulsed-laser three-dimensional imaging flash lidar using APD arrays[J]. Microwave and Optical Technology Letters, 63, 2492-2509(2021).

    [47] Zhao F Q, Jiang H, Liu Z W. Recent development of automotive LiDAR technology, industry and trends[J]. Proceedings of SPIE, 11179, 111794A(2019).

    [48] McManamon P F, Dorschner T A, Corkum D L et al. Optical phased array technology[J]. Proceedings of the IEEE, 84, 268-298(1996).

    [49] Poulton C V, Yaacobi A, Cole D B et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays[J]. Optics Letters, 42, 4091-4094(2017).

    [50] Poulton C V, Byrd M J, Russo P et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7700108(2019).

    [51] Byun H, Lee J S, Jang B et al. A gain-enhanced silicon-photonic optical phased array with integrated O-band amplifiers for 40-m ranging and 3D scan[C], STh3O.7(2020).

    [52] Lee J S, Shin D, Jang B et al. Single-chip beam scanner with integrated light source for real-time light detection and ranging[C](2020).

    [53] Byun H, Cho Y, Hwang I et al. Single-chip beam scanner LiDAR module for 20-m imaging[C](2021).

    [54] Li Y Z, Chen B S, Na Q X et al. Wide-steering-angle high-resolution optical phased array[J]. Photonics Research, 9, 2511-2518(2021).

    [55] Hsu C P, Li B D, Solano-Rivas B et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 8300416(2021).

    [56] Kim Y, Won K, An J et al. Large-area liquid crystal beam deflector with wide steering angle[J]. Applied Optics, 59, 7462-7468(2020).

    [57] Spector S J. Review of lens-assisted beam steering methods[J]. Journal of Optical Microsystems, 2, 011003(2022).

    [58] Cao X Y, Qiu G F, Wu K et al. Lidar system based on lens assisted integrated beam steering[J]. Optics Letters, 45, 5816-5819(2020).

    [59] Li C, Wu K, Cao X Y et al. Monolithic transceiver for lens-assisted beam-steering Lidar[J]. Optics Letters, 46, 5587-5590(2021).

    [60] Li C, Wu K, Cao X Y et al. Monolithic coherent LABS lidar based on an integrated transceiver array[J]. Optics Letters, 47, 2907-2910(2022).

    [61] Zhang G J, Wu K, Li C et al. Lens-assisted frequency modulated continuous wave lidar based on integrated transceiver[J]. Acta Optica Sinica, 42, 0623001(2022).

    [62] Zhang X S, Kwon K, Henriksson J et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 603, 253-258(2022).

    [63] Rogers C, Piggott A Y, Thomson D J et al. A universal 3D imaging sensor on a silicon photonics platform[J]. Nature, 590, 256-261(2021).

    [64] Baba T, Tamanuki T, Ito H et al. Silicon photonics FMCW LiDAR chip with a slow-light grating beam scanner[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8300208(2022).

    [65] Saneyuki S, Shiratori R, Baba T. Unidirectional emission in engineered slow light beam scanner[C](2022).

    [66] Martin A, Dodane D, Leviandier L et al. Photonic integrated circuit-based FMCW coherent LiDAR[J]. Journal of Lightwave Technology, 36, 4640-4645(2018).

    Tools

    Get Citation

    Copy Citation Text

    Qin Yang, Xiaolin Chen, Cheng Zeng, Shiyue Xu, Feng Yang, Jianbo Gao. Overview of LiDAR Technology on Silicon Substrate[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1600002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 31, 2022

    Accepted: Nov. 8, 2022

    Published Online: Aug. 15, 2023

    The Author Email: Chen Xiaolin (chen-xl13@qq.com)

    DOI:10.3788/LOP222426

    Topics