Optics and Precision Engineering, Volume. 30, Issue 22, 2901(2022)

Camera pose estimation based on 2D image and 3D point cloud fusion

Jia-le ZHOU, Bing ZHU*, and Zhi-lu WU
Author Affiliations
  • College of Electronic and Information Engineering, Harbin Institute of Technology, Harbin150001, China
  • show less
    Figures & Tables(13)
    Relationship between coordinate systems
    3D sparse point cloud reconstruction and pose dataset construction
    Dense point cloud data construction
    Flow of multistage camera pose estimation
    Flow of RANSAC algorithm
    Structure dense scene regression network
    Result of scene regression
    Accuracy of pose estimation varies with the error threshold
    Pose estimation accuracy comparison(5 cm/5°)
    Results of median localization Errors
    • Table 1. Detail of labcore dataset

      View table
      View in Article

      Table 1. Detail of labcore dataset

      数据集名称Labcore
      RGB640×480
      Depth640×480
      深度值(16位)单位mm
      帧数4 000
      帧率30 fps
      训练样本数2 000
      测试样本数2 000
    • Table 2. Performance comparison of camera pose estimation algorithms

      View table
      View in Article

      Table 2. Performance comparison of camera pose estimation algorithms

      数据集

      场景

      数据集组成

      Train Test

      位姿估计方法
      PoseNet5DSAC++15SANet20Pixloc16多阶段场景回归(本文)
      Chess4 000 2 00032.0 cm/4.06°2.0 cm/0.5°3.0 cm/0.88°2.0 cm/0.80°1.8 cm/0.64°
      Fire2 000 2 00047.0 cm/7.33°2.0 cm/0.9°3.0 cm/1.08°2.0 cm/0.73°1.8 cm/0.86°
      Heads1 000 1 00029.0 cm/6.00°1.0 cm/0.8°2.0 cm/1.48°1.0 cm/0.82°1.2 cm/0.72°
      Office6 000 4 00048.0 cm/3.84°3.0 cm/0.7°3.0 cm/1.00°3.0 cm/0.82°2.7 cm/0.81°
      Pumpkin4 000 2 00047.0 cm/4.21°4.0 cm/1.1°5.0 cm/1.32°4.0 cm/1.21°4.0 cm/1.11°
      RedKitchen7 000 5 00059.0 cm/4.32°4.0 cm/1.1°4.0 cm/1.40°3.0 cm/1.20°4.0 cm/1.10°
      Stairs2 000 1 00047.0 cm/6.93°9.0 cm/2.6°16.0 cm/4.59°5.0 cm/1.30°3.5 cm/1.01°
    • Table 3. Time consumption comparison of camera pose estimation algorithms

      View table
      View in Article

      Table 3. Time consumption comparison of camera pose estimation algorithms

      处理步骤DSM9DSAC++15Pixloc16本文
      图像检索(单帧)0.170.170.17
      位姿估计(单帧)0.210.20.680.18
      总耗时(单帧)0.380.20.850.35
    Tools

    Get Citation

    Copy Citation Text

    Jia-le ZHOU, Bing ZHU, Zhi-lu WU. Camera pose estimation based on 2D image and 3D point cloud fusion[J]. Optics and Precision Engineering, 2022, 30(22): 2901

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Mar. 21, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: ZHU Bing (zhubing@hit.edu.cn)

    DOI:10.37188/OPE.20223022.2901

    Topics