Journal of the Chinese Ceramic Society, Volume. 50, Issue 5, 1422(2022)

Recent Advances on Aerogels Used for Artificial Ecological Cycle System

LI Huaxin*... YUE Xian, XIAO Zhou, YU Xianbo, SUN Fenglei, XUE Chao and XIANG Junhui |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(120)

    [1] [1] BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): The way forward[J]. Energ Environ Sci, 2018, 11: 1062-1176.

    [2] [2] AL-GHAMDI S G, BILEC M M. On-site renewable energy and green buildings: A system-level analysis[J]. Environ Sci Technol, 2016, 50: 4606-4614.

    [3] [3] YAN Z F, HAO Z P, LU M G Q. Perspective on sustainable energy technologies in Asia and Pacific states[J]. Energ Fuels, 2010, 24: 3713-3714.

    [4] [4] TAIEBAT M, BROWN A L, SAFFORD H R, et al. A review on energy, environmental, and sustainability implications of connected and automated vehicles[J]. Environ Sci Technol, 2018, 52: 11449-1146.

    [5] [5] DAGGASH H A, PATZSCHKE C F, HEUBERGER C F, et al. Closing the carbon cycle to maximise climate change mitigation: Power-to-methanol vs. power-to-direct air capture[J]. Sustain Energ Fuels, 2018, 2: 1153-1169.

    [6] [6] SHERMAN P, CHEN X, MCELROY M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy economy[J]. Sci Adv, 2020, 6: eaax9571.

    [7] [7] DETZ R J, REEK J N H, VAN DER ZWAAN B C C. The future of solar fuels: When could they become competitive?[J]. Energ Environ Sci, 2018, 11: 1653-1669.

    [8] [8] KAUFFMAN D R, THAKKAR J, SIVA R, et al. Efficient electrochemical CO2 conversion powered by renewable energy[J]. ACS Appl Mater Interfaces, 2015, 7: 15626-15632.

    [9] [9] ARMAROLI N, BALZANI V. Towards an electricity-powered world[J]. Energ Environ Sci, 2011, 4: 3193-3222.

    [10] [10] HANK C, STERNBERG A, KPPEL N, et al. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity[J]. Sustain Energ Fuels, 2020, 4: 2256-2273.

    [11] [11] DING T, ZHOU Y, ONG W L, et al. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization[J]. Mater Today, 2021, 42: 178-191.

    [12] [12] CENTI G, QUADRELLI E A, PERATHONER S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energ[J]. Environ Sci, 2013, 6: 1711-1731.

    [13] [13] SALMON N, BAARES-ALCNTARA R. Green ammonia as a spatial energy vector: A review[J]. Sustain Energ Fuels, 2021, 5: 2814-2839.

    [14] [14] GIDDEY S, BADWAL S, MUNNINGS C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustain Chem Eng, 2017, 5: 10231-10239.

    [15] [15] SHI X, SUN Y, SHEN Y. China’s ambitious energy transition plans[J]. Science, 2021, 373: 170.

    [16] [16] ONG W J. Learning from natural leaves: Going green with artificial photosynthesis forum[J]. ACS Appl Mater Interfaces, 2019, 11: 5579-5580.

    [17] [17] SU J, VAYSSIERES L. A place in the sun for artificial photosynthesis?[J]. ACS Energ Lett, 2016, 1: 121-135.

    [18] [18] SEH Z, KIBSGAARD J, DICKENS C, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355: eaad4998.

    [19] [19] HE Y, LIU S, PRIEST C, et al. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement[J]. Chem Soc Rev, 2020, 49: 3484-3524.

    [20] [20] ZHANG Z. Recent advances in atomic level engineering of nanostructured catalysts for electrochemical CO2 reduction[J]. Adv Funct Mater, 2020, 30: 1910534.

    [21] [21] SINGH K, RAZMJOOEI F, YU J S. Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: A review[J]. J Mater Chem A, 2017, 5: 20095-20119.

    [22] [22] MAHYUDDIN M H, SHIOTA Y, YOSHIZAWA K. Methane selective oxidation to methanol by metal-exchanged zeolites: A review of active sites and their reactivity[J]. Catal Sci Technol, 2019, 9: 1744-1768.

    [23] [23] KONG L, ZHONG M, SHUANG W, et al. Electrochemically active sites inside crystalline porous materials for energy storage and conversion[J]. Chem Soc Rev, 2020, 49: 2378-2407.

    [24] [24] ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chem Soc Rev, 2021, 50: 7745-7778.

    [25] [25] LI C, CHEN Z, DONG W, et al. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure[J]. J Non-Cryst Solids, 2021, 553: 120517.

    [26] [26] LINHARES T, PESSOA DE AMORIM M T, DURES L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications[J]. J Mater Chem A, 2019, 7: 22768-22802.

    [27] [27] ROLISON D R, DUNN B. Electrically conductive oxide aerogels: New materials in electrochemistry[J]. J Mater Chem A, 2001, 11: 963-980.

    [28] [28] AHANKARI S, PALIWAL P, SUBHEDAR A, et al. Recent developments in nanocellulose-based aerogels in thermal applications: A review[J]. ACS Nano, 2021, 15: 3849-3874.

    [29] [29] NOROOZI M, PANAHI-SARMAD M, ABRISHAM M, et al. Nanostructure of aerogels and their applications in thermal energy insulation[J]. ACS Appl Energ Mater, 2019, 2: 5319-5349.

    [30] [30] GONG P, BUAHOM P, TRAN M P, et al. Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams[J]. Carbon, 2015, 93: 819-829.

    [32] [32] KUNDU M K, BHOWMIK T, BARMAN S. Gold aerogel supported on graphitic carbon nitride: An efficient electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction[J]. J Mater Chem A, 2015, 3: 23120-23135.

    [33] [33] CHEN Y, LYU S, HAN S, et al. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application[J]. RSC Adv, 2018, 8: 39918-39928.

    [34] [34] YUAN W, HOU C, ZHANG X, et al. Constructing a cathode catalyst layer of a passive direct methanol fuel cell with highly hydrophilic carbon aerogel for improved water management[J]. ACS Appl Mater Interfaces, 2019, 11: 37626-37634.

    [35] [35] WANG L, ZHANG M, YANG B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14: 10633-10647.

    [36] [36] WU T, ZHANG B, WU Z, et al. Three-dimensional reduced graphene oxide aerogel stabilizes molybdenum trioxide with enhanced photocatalytic activity for dye degradation[J]. RSC Adv, 2019, 9: 37573-37583.

    [37] [37] LEE I, KANG S M, JANG S C, et al. One-pot gamma ray-induced green synthesis of a Prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants[J]. J Mater Chem A, 2019, 7: 1737-1748.

    [38] [38] ZHENG Q, KVIT A, CAI Z, et al. A freestanding cellulose nanofibril-reduced graphene oxide-molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density[J]. J Mater Chem A, 2017, 5: 12528-12541.

    [39] [39] BANG A, SADEKAR A G, BUBACK C, et al. Evaluation of dysprosia aerogels as drug delivery systems: A comparative study with random and ordered mesoporous silicas[J]. ACS Appl Mater Interfaces, 2014, 6: 4891-4902.

    [40] [40] RAJANNA S K, KUMAR D, VINJAMUR M, et al. Silica aerogel microparticles from rice husk ash for drug delivery[J]. Ind Eng Chem Res, 2015, 54: 949-956.

    [41] [41] ZU G, SHEN J, WANG W, et al. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds[J]. ACS Appl Mater Interfaces, 2015, 7: 5400-5409.

    [42] [42] DOUK A S, FARSADROOH M, DAMANIGOl F, et al. Porous three-dimensional network of Pd-Cu aerogel toward formic acid oxidation[J]. RSC Adv, 2018, 8: 23539-23545.

    [43] [43] YUE Y, LIU N, MA Y, et al. Highly self-healable 3D microsupercapacitor with mxene-graphene composite aerogel[J]. ACS Nano, 2018, 12: 4224-4232.

    [44] [44] BOZAL-GINESTA C, DURRANT J R. Artificial photosynthesis- concluding remarks[J]. Faraday Discuss, 2019, 215: 439-451.

    [45] [45] LEWIS N S. Developing a scalable artificial photosynthesis technology through nanomaterials by design[J]. Nat Nanotechnol, 2016, 11: 1010-1019.

    [46] [46] WANG D, WANG J, LIU Z E, et al. High-performance electrochemical catalysts based on three-dimensional porous architecture with conductive interconnected networks[J]. ACS Appl Mater Interfaces, 2016, 8: 28265-28273.

    [47] [47] HUANG X, SHEN T, SUN S, et al. Synergistic modulation of carbon-based, precious-metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Appl Mater Interfaces, 2021, 13: 6989-7003.

    [48] [48] HUANG J, BUONSANTI R. Colloidal nanocrystals as heterogeneous catalysts for electrochemical CO2 conversion[J]. Chem Mater, 2018, 31: 13-25.

    [49] [49] NGUYEN T N, SALEHI M, LE Q V, et al. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts[J]. ACS Catal, 2020, 10: 10068-10095.

    [50] [50] KORTLEVER R, SHEN J, SCHOUTEN K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. J Phy Chem Lett, 2015, 6: 4073-4082.

    [51] [51] WANG H, FANG Q, GU W, et al. Noble metal aerogels[J]. ACS Appl Mater Interfaces, 2020, 12: 52234-52250.

    [52] [52] SCHNEEMANN A, WHITE J L, KANG S, et al. Nanostructured metal hydrides for hydrogen storage[J]. Chem Rev, 2018, 118: 10775-10839.

    [53] [53] DA SILVA G C, FERNANDES M R, TICIANELLI E A. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions[J]. ACS Catal, 2018, 8: 2081-2092.

    [54] [54] CHEN I W P, HSIAO C H, HUANG J Y, et al. Highly efficient hydrogen evolution from seawater by biofunctionalized exfoliated MoS2 quantum dot aerogel electrocatalysts that is superior to Pt[J]. ACS Appl Mater Interfaces, 2019, 11: 14159-14165.

    [55] [55] GAO W, LEI M, LI L, et al. Promoting the electrocatalytic properties of nickel aerogel by gold decoration for efficient electrocatalytic oxygen evolution in alkali[J]. Chem Commun, 2020, 56: 15446-15449.

    [56] [56] WANG W, GONG S, LIU, J, et al. Ag-Cu aerogel for electrochemical CO2 conversion to CO[J]. J Colloid Interface Sci, 2021, 595: 159-167.

    [57] [57] MA T, WU Z, WU H, et al. Engineering Bi-Sn interface in bimetallic aerogel with 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH[J]. Angew Chem Int Edit, 2021, 60: 12554-12559.

    [58] [58] HONG W, FENG X, TAN L, et al. Preparation of monodisperse ferrous nanoparticles embedded in carbon aerogels via in situ solid phase polymerization for electrocatalytic oxygen reduction[J]. Nanoscale, 2020, 12: 15318-15324.

    [59] [59] VARELA A S, SAHRAIE R N, STEINBERG J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angew Chem Int Edit, 2015, 54: 10758-10762.

    [60] [60] WANG M, ZHANG B, DING J, et al. Three-dimensional nitrogen-doped graphene aerogel-supported mno nanoparticles as efficient electrocatalysts for CO2 reduction to CO[J]. ACS Sustain Chem Eng, 2020, 8: 4983-4994.

    [61] [61] KOSHY D, CHEN S, LEE D, et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts[J]. Angew Chem Int Edit, 2020, 59: 4043-4050.

    [62] [62] ZHANG C, MA B, ZHOU Y. Three-dimensional polypyrrole derived N-doped carbon nanotube aerogel as a high-performance metal-free catalyst for oxygen reduction reaction[J]. ChemCatChem, 2019, 11: 5495-5504.

    [63] [63] CHEN C, SUN X, YAN X, et al. Boosting CO2 electroreduction on N,P-Co-doped carbon aerogels[J]. Angew Chem Int Edit, 2020, 59: 11123-11129.

    [64] [64] CAO K W, SUN H Y, XUE Q, et al. Functionalized ultrafine rhodium nanoparticles on graphene aerogels for the hydrogen evolution reaction[J]. ChemElectroChem, 2021, 8: 1759-1765.

    [65] [65] YUAN R, XU Y, WANG Y, et al. One-pot hydrothermal preparation of B and N co-doped graphene aerogels loaded with cobalt oxides for the synergistic enhancement of oxygen reduction electrocatalysis[J]. J Electroanal Chem, 2020, 877: 114555.

    [66] [66] GU Y, CHEN S, REN J, et al. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12: 245-253.

    [67] [67] SAITOW K I, WANG Y, TAKAHASHI S. Mechano-synthesized orange TiO2 shows signifcant photocatalysis under visible light[J]. Sci Rep, 2018, 8: 15549.

    [68] [68] ANSARI S A, CHO M H. Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications[J]. Sci Rep, 2016, 6: 25405.

    [69] [69] GUO Q, ZHOU C, ZHIBO M, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv Mater, 2019, 31: 1901997.

    [71] [71] YUE X, XIANG J, CHEN J, et al. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization[J]. J Mater Sci Technol, 2020, 47: 223-230.

    [72] [72] YUE X, LI H, QIU Y, et al. A facile synthesis method of TiO2@SiO2 porous core shell structure for photocatalytic hydrogen evolution[J]. J Solid State Chem, 2021, 300: 122250.

    [73] [73] ZHAO X, JU W, ZHANG J, et al. Mesoporous TiO2/SiO2/Ag ternary composite aerogels for high photocatalysis[J]. New J Chem, 2019, 43: 6234-6241.

    [74] [74] LU K Q, YUAN L, XIN X, et al. Hybridization of graphene oxide with commercial graphene for constructing 3D metal-free aerogel with enhanced photocatalysis[J]. Appl Catal B: Environ, 2018, 226: 16-22.

    [75] [75] QIAO H, HUANG Z, LIU S, et al. Novel Mixed-dimensional photocatalysts based on 3D graphene aerogel embedded with TiO2/MoS2 hybrid[J]. J Phy Chem C, 2019, 123: 10949-10955.

    [76] [76] WAN W, ZHANG R, MA M, et al. Monolithic aerogel photocatalysts: A review[J]. J Mater Chem A, 2018, 6: 754-775.

    [77] [77] HASANPOUR M, HATAMI M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study[J]. J Mol Liq, 2020, 309: 113094.

    [78] [78] ZHOU Z, ZHANG X, LU C, et al. Polyaniline-decorated cellulose aerogel nanocomposite with strong interfacial adhesion and enhanced photocatalytic activity[J]. RSC Adv, 2014, 4: 8966-8972.

    [79] [79] JIANG W, LIU Y, WANG J, et al. Separation-free polyaniline/TiO2 3D hydrogel with high photocatalytic activity[J]. Adv Mater Interfaces, 2016, 3: 1500502.

    [80] [80] LIU H, WEI L, LIU F, et al. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions[J]. ACS Catal, 2019, 9: 5245-5267.

    [81] [81] PIKAAR I, MATASSA S, RABAEY K, et al. Microbes and the next nitrogen revolution[J]. Environ Sci Technol, 2017, 51: 7297-7303.

    [82] [82] SMITH C, HILL A K, TORRENTE-MURCIANO L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape[J]. Energ Environ Sci, 2020, 13: 331-344.

    [83] [83] MUZAMMIL I, LEE D H, DINH D K, et al. A novel energy efficient path for nitrogen fixation using a non-thermal arc[J]. RSC Adv, 2021, 11: 12729-12738.

    [84] [84] WANG M, KHAN M A, MOHSIN I, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energ Environ Sci, 2021, 14: 2535-2548.

    [85] [85] FU Y, LI K, BATMUNKH M, et al. Unsaturated p-metal-based metal-organic frameworks for selective nitrogen reduction under ambient conditions[J]. ACS Appl Mater Interfaces, 2020, 12: 44830-44839.

    [86] [86] LI W, FANG W, WU C, et al. Bimetal-MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction[J]. J Mater Chem A, 2020, 8: 3658-3666.

    [87] [87] WEN L, LI X, ZHANG R, et al. Oxygen vacancy engineering of MOF-derived Zn-doped Co3O4 nanopolyhedrons for enhanced electrochemical nitrogen fixation[J]. ACS Appl Mater Interfaces, 2021, 13: 14181-14188.

    [88] [88] MA D, ZENG Z, LIU L, et al. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction[J]. J Energ Chem, 2021, 54: 501-509.

    [89] [89] SURYANTO B H R, DU H L, WANG D, et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nat Catal, 2019, 2: 290-296.

    [90] [90] CHOI J, SURYANTO B H R, WANG D, et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies[J]. Nat Commun, 2020, 11: 5546.

    [91] [91] LIU Y T, ZHANG M, WANG Y, et al. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability[J]. Angew Chem Int Edit. 2020, 59: 23252-23260.

    [92] [92] ZHANG M, ZHANG L, HUANG S, et al. 2D gallium molybdenum selenide grown on a hollow carbon nanofibrous aerogel for high-efficiency electroreduction of nitrogen: Optimized basal plane activity via selenium vacancy modulation[J]. Appl Catal B: Environ, 2021, 292: 120175.

    [93] [93] LIU J, KONG W, JIN Z, et al. A MoFe nitrogenase-mimicking electrocatalyst for nitrogen fixation with high faradaic efficiency[J]. J Mater Chem A, 2020, 8: 19278-19282.

    [94] [94] MELIN H. Towards a solution to the energy crisis[J]. Nat Astron, 2020, 4: 837-838.

    [95] [95] BURN D. Nuclear power and the energy crisis[J]. New Blackfriars, 1992, 73: 121-131.

    [96] [96] CULLEN D A, NEYERLIN K C, AHLUWALIA R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nat Energ, 2021, 6: 462-474.

    [97] [97] KARP A, SHIELD I. Bioenergy from plants and the sustainable yield challenge[J]. New Phytol, 2008, 179: 15-32.

    [98] [98] BALZANI V, CREDI A, VENTURI M. Photochemical conversion of solar energy[J]. ChemSusChem, 2008, 1: 26-58.

    [99] [99] DOUZIECH M, HELLWEG S, VERONES F. Are wave and tidal energy plants new green technologies?[J]. Environ Sci Technol, 2016, 50: 7870-7878.

    [100] [100] VUPPALADADIYAM A K, PRINSEN P, RAHEEM A, et al. Sustainability analysis of microalgae production systems: A review on resource with unexploited high-value reserves[J]. Environ Sci Technol, 2018, 52: 14031-14049.

    [101] [101] XIA Y, YANG Z, ZHU Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges[J]. J Mater Chem A, 2013, 1: 9365-9381.

    [103] [103] REARDON H, HANLON J M, HUGHES R W, et al. Emerging concepts in solid-state hydrogen storage: The role of nanomaterials design[J]. Energ Environ Sci, 2012, 5: 5951-5979.

    [104] [104] SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: A review[J]. Int J Hydrogen Energy, 2007, 32: 1121-1140.

    [105] [105] CHO E S, RUMINSKI A M, ALONI S, et al. Erratum: Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage[J]. Nat Commun, 2016, 7: 11145.

    [106] [106] AHMED A, SETH S, PUREWAL J, et al. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks[J]. Nat Commun, 2019, 10: 1568.

    [107] [107] GALLAGHER, J. Hydrogen storage: Cold feat[J]. Nat Energy, 2016, 1: 16167.

    [108] [108] KLONTZAS E, MAVRANDONAKIS A, TYLIANAKIS E, et al. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms[J]. Nano Lett, 2008, 8: 1572-1576.

    [109] [109] HU W, HUANG J, YU P, et al. Hierarchically porous carbon derived from neolamarckia cadamba for electrochemical capacitance and hydrogen storage[J]. ACS Sustain Chem Eng, 2019, 7: 15385-15393.

    [110] [110] BAHN E, CZAKKEL O, NAGY B, et al. Diffusion of molecular hydrogen in carbon aerogel[J]. Carbon, 2016, 98: 572-581.

    [111] [111] KABBOUR H, BAUMANN T F, SATCHER J H, et al. Toward new candidates for hydrogen storage: High-surface-area carbon aerogels[J]. Chem Mater, 2006, 18: 6085-6087.

    [112] [112] YANG S J, KIM T, IM J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem Mater, 2012, 24: 464-470.

    [113] [113] TIAN H Y, BUCKLEY C E, WANG S B, et al. Enhanced hydrogen storage capacity in carbon aerogels treated with KOH[J]. Carbon, 2009, 47: 2128-2130.

    [114] [114] SINGH S, BHATNAGAR A, DIXIT V, et al. Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel[J]. Int J Hydrogen Energy, 2016, 41: 3561-3570.

    [115] [115] ZHONG M, FU Z, MI R, et al. Fabrication of Pt-doped carbon aerogels for hydrogen storage by radiation method[J]. Int J Hydrogen Energy, 2018, 43: 19174-19181.

    [116] [116] MCHLER L, CASPER F, YAN B, et al. Topological insulators and thermoelectric materials[J]. Phys Status Solidi R, 2013, 7: 91-100.

    [117] [117] HASAN M, WAHID H, NAYAN N, et al. Inorganic thermoelectric materials: A review International[J]. J Energ Res, 2020, 44: 6170-6222.

    [118] [118] WANG X, LIU P, JIANG Q, et al. Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT: PSS-based aerogel[J]. ACS Appl Mater Interfaces, 2019, 11: 2408-2417.

    [119] [119] TAN D, ZHAO J, GAO C, et al. Carbon nanoparticle hybrid aerogels: 3D double-interconnected network porous microstructure, thermoelectric, and solvent-removal functions[J]. ACS Appl Mater Interfaces, 2017, 9: 21820-21828.

    [120] [120] DONG D, GUO H, LI G, et al. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells[J]. Nano Energy, 2017, 39: 470-477.

    [121] [121] JIANG F, LIU H, LI Y, et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Appl Mater Interfaces, 2017, 10: 1104-1112.

    [122] [122] CUI J, XI Y, CHEN S, et al. Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage[J]. Adv Funct Mater, 2016, 26: 8487-8495.

    [123] [123] CHEN Z, ZHUO H, HU Y, et al. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage[J]. Adv Funct Mater, 2020, 30: 1910292.

    Tools

    Get Citation

    Copy Citation Text

    LI Huaxin, YUE Xian, XIAO Zhou, YU Xianbo, SUN Fenglei, XUE Chao, XIANG Junhui. Recent Advances on Aerogels Used for Artificial Ecological Cycle System[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1422

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 19, 2021

    Accepted: --

    Published Online: Nov. 23, 2022

    The Author Email: Huaxin LI (lihuaxin17@mails.ucas.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics