Optics and Precision Engineering, Volume. 28, Issue 4, 817(2020)

Design of high-accuracy laser beam collimation system

ZHU Fan... LI Ying-xian and TAN Jiu-bin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(66)

    [1] [1] YANG H S, KIM S W, WALKER D. Novel laser datum system for nanometric profilometry for large optical surfaces[J]. Optics Express, 2003, 11(6): 624-631.

              YANG H S, KIM S W, WALKER D. Novel laser datum system for nanometric profilometry for large optical surfaces[J]. Optics Express, 2003, 11(6): 624-631.

    [2] [2] WALKER D, YANG H S, KIM S W. Novel hybrid stylus for nanometric profilometry for large optical surfaces[J]. Optics Express, 2003, 11(15): 1793-1798.

              WALKER D, YANG H S, KIM S W. Novel hybrid stylus for nanometric profilometry for large optical surfaces[J]. Optics Express, 2003, 11(15): 1793-1798.

    [3] [3] WANG K W, ZENG L J, YIN C Y. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement[J]. Optics Communications, 2003, 216(1): 99-103.

              WANG K W, ZENG L J, YIN C Y. Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement[J]. Optics Communications, 2003, 216(1): 99-103.

    [4] [4] ZHAO W Q, TAN J B, QIU L R, et al.. Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts[J]. Review of Scientific Instruments, 2005, 76(3): 036101.

              ZHAO W Q, TAN J B, QIU L R, et al.. Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts[J]. Review of Scientific Instruments, 2005, 76(3): 036101.

    [5] [5] ZHAO W Q, QIU L R, FENG Z D, et al.. Laser beam alignment by fast feedback control of both linear and angular drifts[J]. Optik, 2006, 117(11): 505-510.

              ZHAO W Q, QIU L R, FENG Z D, et al.. Laser beam alignment by fast feedback control of both linear and angular drifts[J]. Optik, 2006, 117(11): 505-510.

    [6] [6] UCHIKOSHI J, SHIMADA S, IKAWA N, et al.. Straightness measurement using laser beam straight datum [J]. SPIE, 1995, 2576: 315-322.

              UCHIKOSHI J, SHIMADA S, IKAWA N, et al.. Straightness measurement using laser beam straight datum [J]. SPIE, 1995, 2576: 315-322.

    [8] [8] ZHU F, TAN X R, TAN J B, et al.. Design of high resolution and output stability autocollimation system [J]. Opt. Precision Eng., 2016, 24(10): 109-116. (in Chinese)

              ZHU F, TAN X R, TAN J B, et al.. Design of high resolution and output stability autocollimation system [J]. Opt. Precision Eng., 2016, 24(10): 109-116. (in Chinese)

    [9] [9] FANG ZH Y, YIN CH Y, LIANG J W. Study on high accuracy laser alignment technique [J]. Aviation Metrology & Measurement Technology, 1997, 17(2): 6-8, 15.(in Chinese)

              FANG ZH Y, YIN CH Y, LIANG J W. Study on high accuracy laser alignment technique [J]. Aviation Metrology & Measurement Technology, 1997, 17(2): 6-8, 15.(in Chinese)

    [10] [10] LUO D, KUANG C F, HAO X, et al.. High-precision laser alignment technique based on spiral phase plate[J]. Optics and Lasers in Engineering, 2012, 50(7): 944-949.

              LUO D, KUANG C F, HAO X, et al.. High-precision laser alignment technique based on spiral phase plate[J]. Optics and Lasers in Engineering, 2012, 50(7): 944-949.

    [11] [11] HAO Q, LI D C, WANG Y T. High-accuracy long distance alignment using single-mode optical fiber and phase plate[J]. Optics and Laser Technology, 2002, 34(4): 287-292.

              HAO Q, LI D C, WANG Y T. High-accuracy long distance alignment using single-mode optical fiber and phase plate[J]. Optics and Laser Technology, 2002, 34(4): 287-292.

    [12] [12] KUANG C F, FENG Q B, ZHANG B, et al.. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors and Actuators A-physical, 2005, 125(1): 100-108.

              KUANG C F, FENG Q B, ZHANG B, et al.. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors and Actuators A-physical, 2005, 125(1): 100-108.

    [13] [13] FENG Q B, ZHANG B, KUANG C F. A straightness measurement system using a single-mode fiber-coupled laser module[J]. Optics & Laser Technology, 2004, 36(4): 279-283.

              FENG Q B, ZHANG B, KUANG C F. A straightness measurement system using a single-mode fiber-coupled laser module[J]. Optics & Laser Technology, 2004, 36(4): 279-283.

    [14] [14] https: //www.physikinstrumente.com/en/products/linear-actuators/nanopositioning-piezo-actuators/p-820-preloaded-piezo-actuators-100500/#specification.

              https: //www.physikinstrumente.com/en/products/linear-actuators/nanopositioning-piezo-actuators/p-820-preloaded-piezo-actuators-100500/#specification.

    [15] [15] SHEN G, GAYHART A R, EATON D J, et al.. Large-angle fast-steering mirrors[C]. San Diego, '91. Proc SPIE 1543, Active and Adaptive Optical Components, San Diego, CA, USA, 1992: 286-293.

              SHEN G, GAYHART A R, EATON D J, et al.. Large-angle fast-steering mirrors[C]. San Diego, '91. Proc SPIE 1543, Active and Adaptive Optical Components, San Diego, CA, USA, 1992: 286-293.

    [16] [16] HEDDING L R, LEWIS R A. Fast steering mirror design and performance for stabilization and single axis scanning [J]. SPIE, 1990, 1304: 14-24.

              HEDDING L R, LEWIS R A. Fast steering mirror design and performance for stabilization and single axis scanning [J]. SPIE, 1990, 1304: 14-24.

    [17] [17] GERMANN L M, BRACCIO J. Fine-steering mirror technology supports 10 nanoradian systems[J]. Optical Engineering, 1990, 29(11): 1351-1359.

              GERMANN L M, BRACCIO J. Fine-steering mirror technology supports 10 nanoradian systems[J]. Optical Engineering, 1990, 29(11): 1351-1359.

    [18] [18] SHEN G Y, GAYHART A R, EATON D J, et al. Large-angle fast-steering mirrors [J]. SPIE, 1992, 1543: 286-293.

              SHEN G Y, GAYHART A R, EATON D J, et al. Large-angle fast-steering mirrors [J]. SPIE, 1992, 1543: 286-293.

    [19] [19] WU X, CHEN S H, SHI B Y, et al.. High-powered voice coil actuator for fast steering mirror[J]. Optical Engineering, 2011, 50(2): 023002.

              WU X, CHEN S H, SHI B Y, et al.. High-powered voice coil actuator for fast steering mirror[J]. Optical Engineering, 2011, 50(2): 023002.

    [20] [20] SWEENEY M N, RYNKOWSKI G A, KETABCHI M, et al.. Design considerations for fast-steering mirrors (FSMs) [J]. SPIE, 2002, 4773: 63-73.

              SWEENEY M N, RYNKOWSKI G A, KETABCHI M, et al.. Design considerations for fast-steering mirrors (FSMs) [J]. SPIE, 2002, 4773: 63-73.

    [21] [21] NIKULIN V V, BOUZOUBAA M, SKORMIN V A, et al.. Modeling of an acousto-optic laser beam steering system intended for satellite communication[J]. Optical Engineering, 2001, 40(10): 2208-2214.

              NIKULIN V V, BOUZOUBAA M, SKORMIN V A, et al.. Modeling of an acousto-optic laser beam steering system intended for satellite communication[J]. Optical Engineering, 2001, 40(10): 2208-2214.

    [22] [22] PINNOW D A. Acousto-optic light deflection: design considerations for first order beam steering transducers[J]. IEEE Transactions on Sonics and Ultrasonics, 1971, 18(4): 209-214.

              PINNOW D A. Acousto-optic light deflection: design considerations for first order beam steering transducers[J]. IEEE Transactions on Sonics and Ultrasonics, 1971, 18(4): 209-214.

    [23] [23] BARBOZA R, ALBERUCCI A, ASSANTO G. Large electro-optic beam steering with nematicons[J]. Optics Letters, 2011, 36(14): 2725-2727.

              BARBOZA R, ALBERUCCI A, ASSANTO G. Large electro-optic beam steering with nematicons[J]. Optics Letters, 2011, 36(14): 2725-2727.

    [24] [24] SCRYMGEOUR D A, BARAD Y, GOPALAN V, et al.. Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning[J]. Applied Optics, 2001, 40(34): 6236-6241.

              SCRYMGEOUR D A, BARAD Y, GOPALAN V, et al.. Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning[J]. Applied Optics, 2001, 40(34): 6236-6241.

    [25] [25] ENGSTROM D, OCALLAGHAN M J, WALKER C K, et al.. Fast beam steering with a ferroelectric-liquid-crystal optical phased array[J]. Applied Optics, 2009, 48(9): 1721-1726.

              ENGSTROM D, OCALLAGHAN M J, WALKER C K, et al.. Fast beam steering with a ferroelectric-liquid-crystal optical phased array[J]. Applied Optics, 2009, 48(9): 1721-1726.

    [26] [26] LIZANA A, MARQUEZ A, LOBATO L, et al.. The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators[J]. Optics Express, 2010, 18(10): 10581-10593.

              LIZANA A, MARQUEZ A, LOBATO L, et al.. The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators[J]. Optics Express, 2010, 18(10): 10581-10593.

    [27] [27] BECK R J, PARRY J P, MACPHERSON W N, et al.. Application of cooled spatial light modulator for high power nanosecond laser micromachining[J]. Optics Express, 2010, 18(16): 17059-17065.

              BECK R J, PARRY J P, MACPHERSON W N, et al.. Application of cooled spatial light modulator for high power nanosecond laser micromachining[J]. Optics Express, 2010, 18(16): 17059-17065.

    [28] [28] GIBSON J L, DUNCAN B D, BOS P, et al.. Wide angle beam steering for Infrared Countermeasures applications [J]. SPIE, 2002, 4723: 100-111.

              GIBSON J L, DUNCAN B D, BOS P, et al.. Wide angle beam steering for Infrared Countermeasures applications [J]. SPIE, 2002, 4723: 100-111.

    [29] [29] AKATAY A, UREY H. Design and optimization of microlens array based high resolution beam steering system[J]. Optics Express, 2007, 15(8): 4523-4529.

              AKATAY A, UREY H. Design and optimization of microlens array based high resolution beam steering system[J]. Optics Express, 2007, 15(8): 4523-4529.

    [30] [30] BOURDERIONNET J, RYNGENHAGEN M, DOLFI D, et al.. Continuous laser beam steering with micro-optical arrays: experimental results [J]. SPIE, 2008, 7113: 1-11.

              BOURDERIONNET J, RYNGENHAGEN M, DOLFI D, et al.. Continuous laser beam steering with micro-optical arrays: experimental results [J]. SPIE, 2008, 7113: 1-11.

    [31] [31] AKATAY A, WADDIE A, SUYAL H, et al.. Comparative performance analysis of 100% fill-factor microlens arrays fabricated by various methods [J]. SPIE, 2006, 61850C: 1-11.

              AKATAY A, WADDIE A, SUYAL H, et al.. Comparative performance analysis of 100% fill-factor microlens arrays fabricated by various methods [J]. SPIE, 2006, 61850C: 1-11.

    [32] [32] SMITH N, ABEYSINGHE D C, HAUS J W, et al.. Agile wide-angle beam steering with electrowetting microprisms[J]. Optics Express, 2006, 14(14): 6557-6563.

              SMITH N, ABEYSINGHE D C, HAUS J W, et al.. Agile wide-angle beam steering with electrowetting microprisms[J]. Optics Express, 2006, 14(14): 6557-6563.

    [33] [33] SMITH N R. Investigation of the performance potential for arrayed electrowetting microprisms [D]. Dissertations & Theses - Gradworks, University of Cincinnati, 2009: 1-7.

              SMITH N R. Investigation of the performance potential for arrayed electrowetting microprisms [D]. Dissertations & Theses - Gradworks, University of Cincinnati, 2009: 1-7.

    CLP Journals

    [1] YANG Bin-he, CAI Yin-di*, WEN Zhi-xiang, LING Si-ying, FAN Kuang-chao. Automatic compensation method for beam drift in long-distance laser measurement[J]. Optics and Precision Engineering, 2020, 28(11): 2393

    Tools

    Get Citation

    Copy Citation Text

    ZHU Fan, LI Ying-xian, TAN Jiu-bin. Design of high-accuracy laser beam collimation system[J]. Optics and Precision Engineering, 2020, 28(4): 817

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 30, 2019

    Accepted: --

    Published Online: Jul. 2, 2020

    The Author Email:

    DOI:10.3788/ope.20202804.0817

    Topics