Acta Optica Sinica, Volume. 42, Issue 23, 2306003(2022)

High-Precision Microwave Photonic Filtering Interrogation Technique Based on Frequency-Time Transform

Xiuwen Zhang, Di Zheng*, Xihua Zou, and Wei Pan
Author Affiliations
  • The School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, Sichuan , China
  • show less
    References(30)

    [1] Yao J P. Microwave photonic sensors[J]. Journal of Lightwave Technology, 39, 3626-3637(2021).

    [2] Zou X H, Bai W L, Chen W et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 36, 4337-4346(2018).

    [3] Zhang Z P, Niu X C, Huang J et al. High-performance microwave photonic filter based on fiber ring resonator[J]. Acta Optica Sinica, 40, 2106001(2020).

    [4] Cui Y F, Wang Y P, Shi Q Y et al. High-resolution transverse load fiber sensor based on microwave photonic filter[J]. Acta Optica Sinica, 38, 1206004(2018).

    [5] Zheng D, Madrigal J, Barrera D et al. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor[J]. IEEE Photonics Technology Letters, 29, 1707-1710(2017).

    [6] Liu J X, Deng H, Zhang W F et al. On-chip sensor for simultaneous temperature and refractive index measurements based on a dual-passband microwave photonic filter[J]. Journal of Lightwave Technology, 36, 4099-4105(2018).

    [7] Wang Y P, Zhang J J, Coutinho O et al. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform[J]. Optics Letters, 40, 4923-4926(2015).

    [8] Zhou L, Li Z Y, Xiang N et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J]. Optics Letters, 43, 2430-2433(2018).

    [9] Zou X H, Liu X K, Li W Z et al. Optoelectronic oscillators (OEOs) to sensing, measurement, and detection[J]. IEEE Journal of Quantum Electronics, 52, 0601116(2016).

    [10] Yang Y G, Wang M G, Shen Y et al. Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating[J]. IEEE Photonics Journal, 10, 6800309(2018).

    [11] Luo C M, Zheng D, Zou X H et al. Performance upgradation of microwave photonic filtering interrogation using Gaussian process regression[J]. Journal of Lightwave Technology, 39, 7682-7688(2021).

    [12] Shi X L, Zheng S L, Chi H et al. Refractive index sensor based on tilted fiber Bragg grating and stimulated Brillouin scattering[J]. Optics Express, 20, 10853-10858(2012).

    [13] Chen H, Zhang S W, Fu H Y et al. Sensing interrogation technique for fiber-optic interferometer type of sensors based on a single-passband RF filter[J]. Optics Express, 24, 2765-2773(2016).

    [14] Zhang X W, Zheng D, Luo C M et al. Machine learning assisted microwave photonic filtering interrogation for displacement sensing[C], T4A.234(2021).

    [15] Chen X Y, Yang S W, Yun J et al. A sensing interrogation system for Sagnac interferometer with polarization maintaining fiber utilizing microwave photonic filtering technique[J]. IEEE Sensors Journal, 20, 1202-1207(2020).

    [16] Dong X Y, Shao L Y, Fu H Y et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J]. Optics Letters, 33, 482-484(2008).

    [17] Wang Y P, Wang M, Xia W et al. High-resolution fiber Bragg grating based transverse load sensor using microwave photonics filtering technique[J]. Optics Express, 24, 17960-17967(2016).

    [18] Liu W S, Fu H Y, Zhang A P et al. Fiber Bragg grating based wireless sensor module with modulated radio-frequency signal[J]. IEEE Microwave and Wireless Components Letters, 20, 358-360(2010).

    [19] Comanici M I, Chen L R, Kung P. Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors[J]. Applied Optics, 56, 9074-9078(2017).

    [20] Bellido J C, Peralta J H, Madrigal J M et al. Fast incoherent OFDR interrogation of FBG arrays using sparse radio frequency responses[J]. Journal of Lightwave Technology, 36, 4393-4400(2018).

    [21] Hervás J, Barrera D, Madrigal J et al. Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on a weak FBGs array[J]. Journal of Lightwave Technology, 36, 1039-1045(2018).

    [22] Wu N S, Xia L, Song Y M et al. Simultaneous differential interrogation for multiple FBGs based on crossed Sagnac loops and microwave network[J]. Journal of Lightwave Technology, 37, 5953-5960(2019).

    [23] Ricchiuti A L, Barrera D, Sales S et al. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques[J]. Optics Express, 21, 28175-28181(2013).

    [24] Ricchiuti A L, Hervás J, Barrera D et al. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor[J]. IEEE Photonics Journal, 6, 5501410(2014).

    [25] Huang J, Lan X W, Luo M et al. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry[J]. Optics Express, 22, 18757-18769(2014).

    [26] Xia L, Cheng R, Li W et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J]. IEEE Photonics Technology Letters, 27, 323-325(2015).

    [27] Hervás J, Fernández-Pousa C R, Barrera D et al. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping[J]. Journal of Lightwave Technology, 33, 2222-2227(2015).

    [28] Werzinger S, Bergdolt S, Engelbrecht R et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 34, 5270-5277(2016).

    [29] Hervás J, Tosi D, García-Miquel H et al. KLT-based interrogation technique for FBG multiplexed sensor tracking[J]. Journal of Lightwave Technology, 35, 3387-3392(2017).

    [30] Hoyer E, Stork R. The zoom FFT using complex modulation[C], 78-81(1977).

    Tools

    Get Citation

    Copy Citation Text

    Xiuwen Zhang, Di Zheng, Xihua Zou, Wei Pan. High-Precision Microwave Photonic Filtering Interrogation Technique Based on Frequency-Time Transform[J]. Acta Optica Sinica, 2022, 42(23): 2306003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Apr. 14, 2022

    Accepted: Jun. 13, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Zheng Di (dzheng@swjtu.edu.cn)

    DOI:10.3788/AOS202242.2306003

    Topics