Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 8, 2865(2023)

Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived Method

SUN Chuhan*, WANG Honglei, and ZHOU Xingui
Author Affiliations
  • [in Chinese]
  • show less
    References(58)

    [2] [2] PEREPEZKO J H. Materials science. The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069.

    [3] [3] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8): 804-809.

    [7] [7] WUCHINA E, OPILA E, OPEKA M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications[J]. The Electrochemical Society Interface, 2007, 16(4): 30-36.

    [8] [8] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: materials for extreme environments[J]. Scripta Materialia, 2017, 129: 94-99.

    [10] [10] NI D W, CHENG C, ZHANG Z, et al. Advances in ultra-high temperature ceramics, composites, and coatings[J]. Journal of Advanced Ceramics, 2022(1): 1-56.

    [11] [11] GOLLA B R, MUKHOPADHYAY A, BASU B, et al. Review on ultra-high temperature boride ceramics[J]. Progress in Materials Science, 2020, 111: 100651.

    [12] [12] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.

    [13] [13] JUSTIN J F, JANKOWIAK A. Ultra high temperature ceramics: densification, properties and thermal stability[J]. Aerospace Lab, 2011(3): 1-11.

    [14] [14] ZHANG X H, HILMAS G E, FAHRENHOLTZ W G. Synthesis, densification, and mechanical properties of TaB2[J]. Materials Letters, 2008, 62(27): 4251-4253.

    [15] [15] JAHAN N, ALI M A. A theoretical study of elastic, electronic, optical and thermodynamic properties of AlB2 and TaB2[J]. Condensed Matter, 2014.

    [16] [16] BASU B, RAJU G B, SURI A K. Processing and properties of monolithic TiB2 based materials[J]. International Materials Reviews, 2006, 51(6): 352-374.

    [17] [17] JIN X C, FAN X L, LU C S, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. Journal of the European Ceramic Society, 2018, 38(1): 1-28.

    [18] [18] ZAPATA-SOLVAS E, JAYASEELAN D D, LIN H T, et al. Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering[J]. Journal of the European Ceramic Society, 2013, 33(7): 1373-1386.

    [19] [19] USHAKOV S V, NAVROTSKY A, HONG Q J, et al. Carbides and nitrides of zirconium and hafnium[J]. Materials, 2019, 12(17): 2728.

    [20] [20] BUYAKOVA S P, DEDOVA E S, WANG D K, et al. Phase evolution during entropic stabilization of ZrC, NbC, HfC, and TiC[J]. Ceramics International, 2022, 48(8): 11747-11755.

    [21] [21] COTTON J. Ultra-high-temperature ceramics[J]. Advanced Materials and Processes, 2010, 168(6): 26-28.

    [22] [22] MALLICK A, CHAKRABORTY S, DAS P. Synthesis and consolidation of ZrC based ceramics: a review[J]. Reviews on Advanced Materials Science, 2016, 44(2): 109-133.

    [23] [23] GUO Y L, CHEN J C, SONG W, et al. Electronic, mechanical and thermodynamic properties of ZrC, HfC and their solid solutions studied by first-principles calculation[J]. Solid State Communications, 2021, 338: 114481.

    [25] [25] FARHADIZADEH A R, GHOMI H. Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods[J]. Materials Research Express, 2020, 7(3): 036502.

    [26] [26] LVY F, HONES P, SCHMID P E, et al. Electronic states and mechanical properties in transition metal nitrides[J]. Surface and Coatings Technology, 1999, 120/121: 284-290.

    [27] [27] LI D, TIAN F B, DUAN D F, et al. Mechanical and metallic properties of tantalum nitrides from first-principles calculations[J]. RSC Advances, 2014, 4(20): 10133-10139.

    [28] [28] MEI Z G, BHATTACHARYA S, YACOUT A M. First-principles study of fracture toughness enhancement in transition metal nitrides[J]. Surface and Coatings Technology, 2019, 357: 903-909.

    [29] [29] HARRISON R W, LEE W E. Processing and properties of ZrC, ZrN and ZrCN ceramics: a review[J]. Advances in Applied Ceramics, 2016, 115(5): 294-307.

    [30] [30] IONESCU E, KLEEBE H J, RIEDEL R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties[J]. Chemical Society Reviews, 2012, 41(15): 5032-5052.

    [31] [31] IONESCU E, BERNARD S, LUCAS R, et al. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials[J]. Advanced Engineering Materials, 2019, 21(8): 1900269.

    [32] [32] JIANG J M, WANG S, LI W, et al. Low-temperature synthesis of tantalum carbide by facile one-pot reaction[J]. Ceramics International, 2016, 42(6): 7118-7124.

    [33] [33] CHENG Z, FOROUGHI P, BEHRENS A. Synthesis of nanocrystalline TaC powders via single-step high temperature spray pyrolysis from solution precursors[J]. Ceramics International, 2017, 43(3): 3431-3434.

    [34] [34] SHIMADA S, INAGAKI M, MATSUI K. Oxidation kinetics of hafnium carbide in the temperature range of 480 to 600 ℃[J]. Journal of the American Ceramic Society, 1992, 75(10): 2671-2678.

    [35] [35] DESMAISON-BRUT M, ALEXANDRE N, DESMAISON J. Comparison of the oxidation behaviour of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) Materials[J]. Journal of the European Ceramic Society, 1997, 17(11): 1325-1334.

    [36] [36] ZHANG J, WANG S, LI W, et al. Understanding the oxidation behavior of Ta-Hf-C ternary ceramics at high temperature[J]. Corrosion Science, 2020, 164: 108348.

    [39] [39] NAZAROVA S Z, KURMAEV E Z, MEDVEDEVA N I, et al. Physical properties and electronic structure of TaC-HfC solid solutions[J]. Russian Journal of Inorganic Chemistry, 2007, 52(2): 233-237.

    [40] [40] CHENG J, DONG Z J, ZHU H, et al. Synthesis and ceramisation of organometallic precursors for Ta4HfC5 and TaHfC2 ultra-fine powders through a facile one-pot reaction[J]. Journal of Alloys and Compounds, 2022, 898: 162989.

    [41] [41] LU Y, SUN Y N, ZHANG T Z, et al. Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: synthesis, microstructure and properties[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 205-211.

    [43] [43] PELLEGRINI C, BALAT-PICHELIN M, RAPAUD O, et al. Oxidation resistance of Zr- and Hf-diboride composites containing SiC in air plasma up to 2 600 K for aerospace applications[J]. Ceramics International, 2022, 48(2): 2177-2190.

    [44] [44] XU X T, PAN X H, NIU Y R, et al. Difference evaluation on ablation behaviors of ZrC-based and ZrB2-based UHTCs coatings[J]. Corrosion Science, 2021, 180: 109181.

    [45] [45] TALMY I G, ZAYKOSKI J A, OPEKA MM, et al. Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition metal diborides[J]. Proceedings-Electrochemical Society, 2001.

    [46] [46] XIE Y L, SANDERS JR T H, SPEYER R F. Solution-based synthesis of submicrometer ZrB2 and ZrB2-TaB2[J]. Journal of the American Ceramic Society, 2008, 91(5): 1469-1474.

    [47] [47] NIU Y R, PU H, HUANG L P, et al. Microstructure and ablation property of TaC-SiC composite coatings[J]. Key Engineering Materials, 2016, 697: 535-538.

    [49] [49] LU Y, CHEN F H, AN P F, et al. Polymer precursor synthesis of TaC-SiC ultrahigh temperature ceramic nanocomposites[J]. RSC Advances, 2016, 6(91): 88770-88776.

    [50] [50] CAI T, LIU D, QIU W F, et al. Polymer precursor-derived HfC-SiC ultrahigh-temperature ceramic nanocomposites[J]. Journal of the American Ceramic Society, 2018, 101(1): 20-24.

    [51] [51] PATRA N, LEE W E. Facile precursor synthesis of HfC-SiC ultra-high-temperature ceramic composite powder for potential hypersonic applications[J]. ACS Applied Nano Materials, 2018, 1(9): 4502-4508.

    [52] [52] WANG X Z, ZHANG L Y, WANG Y F. Preparation of HfC-SiC ultra-high-temperature ceramics by the copolycondensation of HfC and SiC precursors[J]. Journal of Materials Science, 2022, 57(7): 4467-4480.

    [53] [53] BAI W C, JIAN K, SHI Y L. The preparation of LPVCS with high ceramic yield and low oxygen content[J]. Advances in Applied Ceramics, 2018, 117(6): 369-375.

    [54] [54] CHENG J, WANG X Z, WANG H, et al. Preparation and high-temperature behavior of HfC-SiC nanocomposites derived from a non-oxygen single-source-precursor[J]. Journal of the American Ceramic Society, 2017, 100(11): 5044-5055.

    [55] [55] GAO Q, HAN C, WANG X Z, et al. Stepwise synthesis of a Zr-C-Si main chain polymer precursor for ZrC/SiC/C composite ceramics[J]. RSC Advances, 2022, 12(4): 2253-2261.

    [56] [56] WANG H, CHEN X B, GAO B, et al. Synthesis and characterization of a novel precursor-derived ZrC/ZrB2 ultra-high-temperature ceramic composite[J]. Applied Organometallic Chemistry, 2013, 27(2): 79-84.

    [57] [57] SHEN J, TANG Z C, TUSIIME R, et al. Effects of hafnium sources and hafnium content on the structures and properties of SiBNC-Hf ceramic precursors[J]. Journal of the American Ceramic Society, 2023, 106(5): 3239-3251.

    [59] [59] AMORS P, BELTRN D, GUILLEM C, et al. Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors[J]. Chemistry of Materials, 2002, 14(4): 1585-1590.

    [60] [60] YU Z J, YANG Y J, MAO K W, et al. Single-source-precursor synthesis and phase evolution of SiC-TaC-C ceramic nanocomposites containing core-shell structured TaC@C nanoparticles[J]. Journal of Advanced Ceramics, 2020, 9(3): 320-328.

    [61] [61] WEN Q B, XU Y P, XU B B, et al. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites[J]. Nanoscale, 2014, 6(22): 13678-13689.

    [63] [63] WEN Q B, YU Z J, RIEDEL R, et al. Single-source-precursor synthesis and high-temperature evolution of a boron-containing SiC/HfC ceramic nano/micro composite[J]. Journal of the European Ceramic Society, 2021, 41(5): 3002-3012.

    [64] [64] WEN Q B, YU Z J, RIEDEL R, et al. Significant improvement of high-temperature oxidation resistance of HfC/SiC ceramic nanocomposites with the incorporation of a small amount of boron[J]. Journal of the European Ceramic Society, 2020, 40(10): 3499-3508.

    [65] [65] JAYASEELAN D D, ZAPATA-SOLVAS E, CHATER R J, et al. Structural and compositional analyses of oxidised layers of ZrB2-based UHTCs[J]. Journal of the European Ceramic Society, 2015, 35(15): 4059-4071.

    [66] [66] YU Z J, LV X, LAI S Y, et al. ZrC-ZrB2-SiC ceramic nanocomposites derived from a novel single-source precursor with high ceramic yield[J]. Journal of Advanced Ceramics, 2019, 8(1): 112-120.

    [67] [67] YU Z J, PEI Y X, LAI S Y, et al. Single-source-precursor synthesis, microstructure and high temperature behavior of TiC-TiB2-SiC ceramic nanocomposites[J]. Ceramics International, 2017, 43(8): 5949-5956.

    [68] [68] CHENG J, WANG J, WANG X Z, et al. Preparation and high-temperature performance of HfC-based nanocomposites derived from precursor with Hf-(O, N) bonds[J]. Ceramics International, 2017, 43(9): 7159-7165.

    [69] [69] FENG B, PETER J, FASEL C, et al. High-temperature phase and microstructure evolution of polymer-derived SiZrCN and SiZrBCN ceramic nanocomposites[J]. Journal of the American Ceramic Society, 2020, 103(12): 7001-7013.

    [70] [70] YUAN J, HAPIS S, BREITZKE H, et al. Single-source-precursor synthesis of hafnium-containing ultrahigh-temperature ceramic nanocomposites (UHTC-NCs)[J]. Inorganic Chemistry, 2014, 53(19): 10443-10455.

    Tools

    Get Citation

    Copy Citation Text

    SUN Chuhan, WANG Honglei, ZHOU Xingui. Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived Method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2865

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 12, 2023

    Accepted: --

    Published Online: Nov. 1, 2023

    The Author Email: Chuhan SUN (15104516953@163.com)

    DOI:

    Topics