Chinese Optics Letters, Volume. 22, Issue 6, 060006(2024)

Magnetic field imaging with radio-frequency optically pumped magnetometers [Invited]

Xiyu Liu, Junlong Han, Wei Xiao, Teng Wu, Xiang Peng, and Hong Guo*
Author Affiliations
  • School of Electronics, Peking University, Beijing 100871, China
  • show less
    Figures & Tables(8)
    The basic principle of RF-OPMs. In the laboratory coordinate system, a z-axis pump light polarizes the atoms under a bias field B0 applied in the same direction. When the frequency of the transverse RF field Brf to be measured coincides with the Larmor frequency, magnetic resonances occur. This phenomenon can be easily understood in the rotating coordinate system.
    (a) Imaging principles for conductive materials and magnetically permeable materials. The primary coil applies the primary magnetic field Bp to the test sample. The primary field induces eddy currents on the surface of materials with high conductivity, resulting in a secondary field opposite to the primary field. For materials with high magnetic permeability, the primary field induces local magnetization on the surface, leading to a secondary magnetic field in the same direction as the primary field. (b) Imaging of a square 90 mm stainless steel plate with a circular recess (diameter 25 mm) using an RF-OPM, capturing changes in amplitude and phase of the signal of the RF-OPM. Adapted from Bevington et al., 2020[46].
    (a) Typical configuration of ULF-MRI with a flux transformer. Phantom is the test sample for ULF-MRI. (b) Comparison of ULF-MRI of the human head with traditional MRI. Adapted from Zotev et al., 2018[67].
    (a) Spatial encoding in MPI. After applying a modulation field to SPIONs, the magnetic field at the center (field-free point, FFP) of the inhomogeneous selection field becomes zero. The magnetization of SPIONs undergoes substantial oscillations due to the modulation field. At the edges of the selection field, where the magnetic field intensity is higher, the magnetization of SPIONs tends to saturate, resulting in a reduction in oscillation amplitude. The adjustment of the FFP is accomplished through the use of a focus field, facilitating spatial encoding. (b) In vivo overlays of MPI images (red) onto anatomical MRI images (gray) of mouse hearts and cardiovascular systems obtained using tracer materials. Adapted from Knopp et al., 2012[83].
    • Table 1. Typical Studies of RF-OPMs Based on MR Scheme

      View table
      View in Article

      Table 1. Typical Studies of RF-OPMs Based on MR Scheme

      Atomic cellSensitivityAtomsEnvironmentReference
      1 cm × 1 cm × 1 cm9fT/Hz @ 21.5 kHzRb87Rb85ShieldedDhombridge et al. (2022)[35]
      3.8 cm × 3.8 cm × 3.8 cm2fT/Hz @ 99 kHzKShieldedSavukov et al. (2005)[32]
      4 cm × 4 cm × 6 cm0.3fT/Hz @ 0.5 MHzKUnshieldedKeder et al. (2014)[33]
      0.9fT/Hz @ 1.3 MHz
      4 cm × 4 cm × 6 cm0.24fT/Hz @ 423 kHzKShieldedLee et al. (2006)[22]
      5.2 cm × 2.1 cm × 2.6 cm0.19fT/Hz @ 1 MHzRb87UnshieldedCooper et al. (2022)[34]
    • Table 2. Methods Used in NDT Applications

      View table
      View in Article

      Table 2. Methods Used in NDT Applications

      TechniqueDepthResolutionCharacteristics
      RadiographyUnlimited[36]μm[40]Expensive, slow for thick samples, harmful to human body
      Ultrasonic10 mm[41]1 mm[42]Economical, fast, only for sound conductor
      Thermography∼mm[43]0.5 µm[44]Fast, portable, needing heated samples
      MITSub-mm[45]0.1 mm[45]Economical, contactless, only for electromagnetic conductors
    • Table 3. Experimental Results of Applying RF Atomic Magnetometers for NDT on Materials with High Electrical Conductivity

      View table
      View in Article

      Table 3. Experimental Results of Applying RF Atomic Magnetometers for NDT on Materials with High Electrical Conductivity

      VolumeFrequencyPenetration depthResolutionReference
      5 cm × 5 cm × 5 cm10 kHz0.82 mm30 mmWickenbrock et al. (2014)[50]
      2.5 cm × 2.5 cm × 2.5 cm10 kHzSub-mmDeans et al. (2016)[51]
      Φ 2.5 cm × 2.5 cm250 kHzSub-mmWickenbrock et al. (2016)[52]
      1 cm × 1 cm × 1 cm12.6 kHz0.18 mm0.1 mmBevington et al. (2018)[45]
      5 mm310.5 kHz1 mm7 mmRushton et al. (2022)[53]
    • Table 4. Imaging Results of ULF-MRI Based on RF-OPMs

      View table
      View in Article

      Table 4. Imaging Results of ULF-MRI Based on RF-OPMs

      SensitivityBias fieldEnvironmentResolutionReference
      Image planeaSlice directiona
      80fT/Hz @ 0.1 Hz3.1 mTShielded4.5 mm × 4.5 mm1.6 mmXu et al. (2006)[62]
      24fT/Hz @ 1 kHz117.5 µTShielded8.9 mm × 8.9 mm7.4 mmHilschenz et al. (2017)[68]
      12fT/Hz @ 3.2 kHz75 µTShielded2 mm × 2 mmSavukov et al. (2009)[64]
      2fT/Hz @ 80 kHz12 µTShielded1.1 mm × 1.4 mm4.5 mmSavukov et al. (2013)[66]
      14.7fT/Hz @ 300 kHz42 µTUnshielded3 mm × 3 mm3 mmHori et al. (2022)[70]
    Tools

    Get Citation

    Copy Citation Text

    Xiyu Liu, Junlong Han, Wei Xiao, Teng Wu, Xiang Peng, Hong Guo, "Magnetic field imaging with radio-frequency optically pumped magnetometers [Invited]," Chin. Opt. Lett. 22, 060006 (2024)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE ON QUANTUM IMAGING

    Received: Feb. 27, 2024

    Accepted: Apr. 1, 2024

    Published Online: Jun. 24, 2024

    The Author Email: Hong Guo (hongguo@pku.edu.cn)

    DOI:10.3788/COL202422.060006

    Topics