Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2200001(2023)

Photothermal Microimaging: A Non-Invasive and High-Resolution Imaging Technique

Jiayu Ding1,3 and Siying Peng2,3、*
Author Affiliations
  • 1Department of Materials Science, Fudan University, Shanghai 200433, China
  • 2Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
  • 3School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
  • show less
    References(97)

    [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [2] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [3] Gao L, Gao B B, Wang F. Applications of super-resolution microscopy techniques in living brain imaging[J]. Chinese Journal of Lasers, 49, 2007301(2022).

    [4] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [5] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [6] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [7] Cialla-May D, Krafft C, Rösch P et al. Raman spectroscopy and imaging in bioanalytics[J]. Analytical Chemistry, 94, 86-119(2022).

    [8] Gong L, Wang H F. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study[J]. Physical Review A, 90, 013818(2014).

    [9] Yonemaru Y, Palonpon A F, Kawano S et al. Super-spatial- and-spectral-resolution in vibrational imaging via saturated coherent anti-stokes Raman scattering[J]. Physical Review Applied, 4, 014010(2015).

    [10] Watanabe K, Palonpon A F, Smith N I et al. Structured line illumination Raman microscopy[J]. Nature Communications, 6, 10095(2015).

    [11] Qian C X, Miao K, Lin L E et al. Super-resolution label-free volumetric vibrational imaging[J]. Nature Communications, 12, 3648(2021).

    [12] Cançado L G, Jorio A, Pimenta M A. Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size[J]. Physical Review B, 76, 064304(2007).

    [13] Bohren C F, Huffman D R[M]. Absorption and scattering of light by small particles(1998).

    [14] Li Z M, Aleshire K, Kuno M et al. Super-resolution far-field infrared imaging by photothermal heterodyne imaging[J]. The Journal of Physical Chemistry B, 121, 8838-8846(2017).

    [15] Zhang S A, Kniazev K, Pavlovetc I M et al. Deep image restoration for infrared photothermal heterodyne imaging[J]. The Journal of Chemical Physics, 155, 214202(2021).

    [16] Fu P C, Cao W L, Chen T R et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy[J]. Nature Photonics, 17, 330-337(2023).

    [17] Hosseinaee Z, Le M, Bell K et al. Towards non-contact photoacoustic imaging[J]. Photoacoustics, 20, 100207(2020).

    [18] Goy A S, Fleischer J W. Resolution enhancement in nonlinear photoacoustic imaging[J]. Applied Physics Letters, 107, 211102(2015).

    [19] Tamamitsu M, Toda K, Shimada H et al. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect[J]. Optica, 7, 359-366(2020).

    [20] Jia D C, Zhang Y, Yang Q W et al. 3D chemical imaging by fluorescence-detected mid-infrared photothermal Fourier light field microscopy[J]. Chemical & Biomedical Imaging, 3-00022(2023).

    [21] Zhang D L, Li C, Zhang C et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution[J]. Science Advances, 2, e1600521(2016).

    [22] Yin J Z, Lan L, Zhang Y et al. Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering[J]. Nature Communications, 12, 7097(2021).

    [23] Lim J M, Park C, Park J S et al. Cytoplasmic protein imaging with mid-infrared photothermal microscopy: cellular dynamics of live neurons and oligodendrocytes[J]. The Journal of Physical Chemistry Letters, 10, 2857-2861(2019).

    [24] Li C, Zhang D L, Slipchenko M N et al. Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution[J]. Analytical Chemistry, 89, 4863-4867(2017).

    [25] Banas A, Banas K, Lo M K F et al. Detection of high-explosive materials within fingerprints by means of optical-photothermal infrared spectromicroscopy[J]. Analytical Chemistry, 92, 9649-9657(2020).

    [26] Chatterjee R, Pavlovetc I M, Aleshire K et al. Subdiffraction infrared imaging of mixed cation perovskites: probing local cation heterogeneities[J]. ACS Energy Letters, 3, 469-475(2018).

    [27] Su Y, Hu X, Tang H J et al. Steam disinfection releases micro (nano) plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy[J]. Nature Nanotechnology, 17, 76-85(2022).

    [28] Paiva E M, Schmidt F M. Ultrafast widefield mid-infrared photothermal heterodyne imaging[J]. Analytical Chemistry, 94, 14242-14250(2022).

    [29] Toda K, Tamamitsu M, Nagashima Y et al. Molecular contrast on phase-contrast microscope[J]. Scientific Reports, 9, 9957(2019).

    [30] Li X J, Zhang D L, Bai Y R et al. Fingerprinting a living cell by Raman integrated mid-infrared photothermal microscopy[J]. Analytical Chemistry, 91, 10750-10756(2019).

    [31] Berciaud S, Cognet L, Blab G A et al. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals[J]. Physical Review Letters, 93, 257402(2004).

    [32] Gaiduk A, Yorulmaz M, Ruijgrok P V et al. Room-temperature detection of a single molecule’s absorption by photothermal contrast[J]. Science, 330, 353-356(2010).

    [33] Tomimatsu T, Miyazaki J, Kano Y et al. Photothermal imaging of skeletal muscle mitochondria[J]. Biomedical Optics Express, 8, 2965-2975(2017).

    [34] Miyazaki J, Toumon Y. Label-free dynamic imaging of mitochondria and lysosomes within living cells via simultaneous dual-pump photothermal microscopy[J]. Biomedical Optics Express, 10, 5852-5861(2019).

    [35] Xia Q, Yin J Z, Guo Z Y et al. Mid-infrared photothermal microscopy: principle, instrumentation, and applications[J]. The Journal of Physical Chemistry B, 126, 8597-8613(2022).

    [36] Bai Y R, Yin J Z, Cheng J X. Bond-selective imaging by optically sensing the mid-infrared photothermal effect[J]. Science Advances, 7, eabg1559(2021).

    [37] Pavlovetc I M, Aleshire K, Hartland G V et al. Approaches to mid-infrared, super-resolution imaging and spectroscopy[J]. Physical Chemistry Chemical Physics, 22, 4313-4325(2020).

    [38] Govorov A O, Zhang W, Skeini T et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances[J]. Nanoscale Research Letters, 1, 84(2006).

    [39] Chen X, Chen Y T, Yan M et al. Nanosecond photothermal effects in plasmonic nanostructures[J]. ACS Nano, 6, 2550-2557(2012).

    [40] Kim K J, King W P. Thermal conduction between a heated microcantilever and a surrounding air environment[J]. Applied Thermal Engineering, 29, 1631-1641(2009).

    [41] Richardson H H, Carlson M T, Tandler P J et al. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions[J]. Nano Letters, 9, 1139-1146(2009).

    [42] Govorov A O, Richardson H H. Generating heat with metal nanoparticles[J]. Nano Today, 2, 30-38(2007).

    [43] Baffou G, Quidant R, Girard C. Thermoplasmonics modeling: a Green’s function approach[J]. Physical Review B, 82, 165424(2010).

    [44] Baffou G, Quidant R, García de Abajo F J. Nanoscale control of optical heating in complex plasmonic systems[J]. ACS Nano, 4, 709-716(2010).

    [45] Selmke M, Braun M, Cichos F. Photothermal single-particle microscopy: detection of a nanolens[J]. ACS Nano, 6, 2741-2749(2012).

    [46] Bauld R, Choi D Y W, Bazylewski P et al. Thermo-optical characterization and thermal properties of graphene-polymer composites: a review[J]. Journal of Materials Chemistry C, 6, 2901-2914(2018).

    [47] Zhang Z Y, Zhao P, Lin P et al. Thermo-optic coefficients of polymers for optical waveguide applications[J]. Polymer, 47, 4893-4896(2006).

    [48] Tokeshi M, Uchida M, Hibara A et al. Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination[J]. Analytical Chemistry, 73, 2112-2116(2001).

    [49] Zharov V P, Lapotko D O. Photothermal imaging of nanoparticles and cells[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 733-751(2005).

    [50] Sullenberger R M, Redmond S M, Crompton D et al. Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering[J]. Optics Letters, 42, 203-206(2017).

    [51] Berciaud S, Lasne D, Blab G A et al. Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment[J]. Physical Review B, 73, 045424(2006).

    [52] Cognet L, Berciaud S, Lasne D et al. Photothermal methods for single nonluminescent nano-objects[J]. Analytical Chemistry, 80, 2288-2294(2008).

    [53] Kim J D, Kim D U, Jeong C B et al. Wide-field photothermal reflectance spectroscopy for single nanoparticle absorption spectrum analysis[J]. Nanophotonics, 10, 3433-3440(2021).

    [54] Boccara A C, Fournier D, Badoz J. Thermo-optical spectroscopy: detection by the “mirage effect”[J]. Applied Physics Letters, 36, 130-132(1980).

    [55] Fournier D, Lepoutre F, Boccara A C. Tomographic approach for photothermal imaging using the mirage effect[J]. Le Journal De Physique Colloques, 44, C6-479(1983).

    [56] Boyer D, Tamarat P, Maali A et al. Photothermal imaging of nanometer-sized metal particles among scatterers[J]. Science, 297, 1160-1163(2002).

    [57] Cognet L, Tardin C, Boyer D et al. Single metallic nanoparticle imaging for protein detection in cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 11350-11355(2003).

    [58] Vobornik D, Margaritondo G, Sanghera J S et al. Spectroscopic infrared scanning near-field optical microscopy (IR-SNOM)[J]. Journal of Alloys and Compounds, 401, 80-85(2005).

    [59] Huth F, Govyadinov A, Amarie S et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution[J]. Nano Letters, 12, 3973-3978(2012).

    [60] Smith A D, Siggel-King M R F, Holder G M et al. Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis[J]. Applied Physics Letters, 102, 053701(2013).

    [61] Lu F, Jin M Z, Belkin M A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection[J]. Nature Photonics, 8, 307-312(2014).

    [62] Dazzi A, Prater C B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 117, 5146-5173(2017).

    [63] Lee E S, Lee J Y. Nonlinear optical infrared microscopy with chemical specificity[J]. Applied Physics Letters, 94, 261101(2009).

    [64] Zhao J A, Matlock A, Zhu H B et al. Bond-selective intensity diffraction tomography[J]. Nature Communications, 13, 7767(2022).

    [65] Zhang Y, Yurdakul C, Devaux A J et al. Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy[J]. Analytical Chemistry, 93, 4100-4107(2021).

    [66] Bai Y R, Zhang D L, Lan L et al. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption[J]. Science Advances, 5, eaav7127(2019).

    [67] Tamamitsu M, Toda K, Horisaki R et al. Quantitative phase imaging with molecular vibrational sensitivity[J]. Optics Letters, 44, 3729-3732(2019).

    [68] Schnell M, Mittal S, Falahkheirkhah K et al. All-digital histopathology by infrared-optical hybrid microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 3388-3396(2020).

    [69] Mankar R, Gajjela C C, Bueso-Ramos C E et al. Polarization sensitive photothermal mid-infrared spectroscopic imaging of human bone marrow tissue[J]. Applied Spectroscopy, 76, 508-518(2022).

    [70] Bai Y R, Guo Z Y, Pereira F C et al. Mid-infrared photothermal-fluorescence in situ hybridization for functional analysis and genetic identification of single cells[J]. Analytical Chemistry, 95, 2398-2405(2023).

    [71] Zhang Y, Zong H N, Zong C et al. Fluorescence-detected mid-infrared photothermal microscopy[J]. Journal of the American Chemical Society, 143, 11490-11499(2021).

    [72] Guo Z Y, Bai Y R, Zhang M et al. High-throughput antimicrobial susceptibility testing of Escherichia coli by wide-field mid-infrared photothermal imaging of protein synthesis[J]. Analytical Chemistry, 95, 2238-2244(2023).

    [74] Zhang D L, Lan L, Bai Y R et al. Bond-selective transient phase imaging via sensing of the infrared photothermal effect[J]. Light: Science & Applications, 8, 116(2019).

    [75] Klementieva O, Sandt C, Martinsson I et al. Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons[J]. Advanced Science, 7, 1903004(2020).

    [76] Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chemical Reviews, 114, 3189-3202(2014).

    [77] Blom H, Widengren J. Stimulated emission depletion microscopy[J]. Chemical Reviews, 117, 7377-7427(2017).

    [78] Hu F H, Shi L X, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy[J]. Nature Methods, 16, 830-842(2019).

    [79] Yao J J, Wang L V. Sensitivity of photoacoustic microscopy[J]. Photoacoustics, 2, 87-101(2014).

    [80] Mu S Q, Dong D S, Shi K B. Label-free optical imaging technology[J]. Laser & Optoelectronics Progress, 59, 1200001(2022).

    [81] Kaneko G, Ushio H, Ji H. Application of magnetic resonance technologies in aquatic biology and seafood science[J]. Fisheries Science, 85, 1-17(2019).

    [82] Buchberger A R, DeLaney K, Johnson J et al. Mass spectrometry imaging: a review of emerging advancements and future insights[J]. Analytical Chemistry, 90, 240-265(2018).

    [83] Pavlovetc I M, Podshivaylov E A, Chatterjee R et al. Infrared photothermal heterodyne imaging: contrast mechanism and detection limits[J]. Journal of Applied Physics, 127, 165101(2020).

    [84] Lee E S, Lee J Y. High resolution cellular imaging with nonlinear optical infrared microscopy[J]. Optics Express, 19, 1378-1384(2011).

    [85] Kansiz M, Dowling L M, Yousef I et al. Optical photothermal infrared microspectroscopy discriminates for the first time different types of lung cells on histopathology glass slides[J]. Analytical Chemistry, 93, 11081-11088(2021).

    [86] Gaiduk A, Ruijgrok P V, Yorulmaz M et al. Detection limits in photothermal microscopy[J]. Chemical Science, 1, 343-350(2010).

    [87] Born M A X, Wolf E. Preface to the first edition[M]. Born M A X, Wolf E. Principles of Optics. 6th ed(1980).

    [88] Baffou G, Berto P, Bermúdez Ureña E et al. Photoinduced heating of nanoparticle arrays[J]. ACS Nano, 7, 6478-6488(2013).

    [89] Bates M, Dempsey G T, Chen K H et al. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection[J]. ChemPhysChem, 13, 99-107(2012).

    [90] Dai S Y, Yang D. A visible and near-infrared light activatable diazocoumarin probe for fluorogenic protein labeling in living cells[J]. Journal of the American Chemical Society, 142, 17156-17166(2020).

    [91] Zhao Y F, Du J, Zhang J R et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm[J]. Applied Physics Letters, 112, 171103(2018).

    [92] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    [93] Li M L, Bai P, Yan C et al. Mid-infrared silicon metasurfaces for near-field enhancement of molecular fingerprints[J]. Optics Letters, 48, 1502-1505(2023).

    [94] Yavas O, Svedendahl M, Dobosz P et al. On-a-chip biosensing based on all-dielectric nanoresonators[J]. Nano Letters, 17, 4421-4426(2017).

    [95] Yu Y F, Zhu A Y, Paniagua-Domínguez R et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser & Photonics Reviews, 9, 412-418(2015).

    [96] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    [97] Colburn S, Zhan A L, Majumdar A. Metasurface optics for full-color computational imaging[J]. Science Advances, 4, eaar2114(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jiayu Ding, Siying Peng. Photothermal Microimaging: A Non-Invasive and High-Resolution Imaging Technique[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2200001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 3, 2023

    Accepted: May. 15, 2023

    Published Online: Nov. 3, 2023

    The Author Email: Peng Siying (pengsiying@westlake.edu.cn)

    DOI:10.3788/LOP231026

    Topics