Optics and Precision Engineering, Volume. 28, Issue 10, 2337(2020)
Estimation of soil temperature based on XGBoost and LSTM methods
[1] [1] FENG Y, CUI N, HAO W, et al.. Estimation of soil temperature from meteorological data using different machine learning models[J]. Geoderma, 2019, 338: 67-77.
FENG Y, CUI N, HAO W, et al.. Estimation of soil temperature from meteorological data using different machine learning models[J]. Geoderma, 2019, 338: 67-77.
[2] [2] SANIKHANIA H, DEOB R C, YASEENC Z M, et al.. Non-tuned data intelligent model for soil temperature estimation: A new approach[J]. Geoderma, 2018, 330: 52-64.
SANIKHANIA H, DEOB R C, YASEENC Z M, et al.. Non-tuned data intelligent model for soil temperature estimation: A new approach[J]. Geoderma, 2018, 330: 52-64.
[3] [3] CORNU J Y, DENAIX L, LACOSTE J, et al.. Impact of temperature on the dynamics of organic matter and on the soil-to-plant transfer of Cd, Zn and Pb in a contaminated agricultural soil[J]. Environmental Science and Pollution Research, 2016, 23: 2997-3007.
CORNU J Y, DENAIX L, LACOSTE J, et al.. Impact of temperature on the dynamics of organic matter and on the soil-to-plant transfer of Cd, Zn and Pb in a contaminated agricultural soil[J]. Environmental Science and Pollution Research, 2016, 23: 2997-3007.
[4] [4] KIM Y, C STILL J, HANSON C V, et al.. Canopy skin temperature variations in relation to climate, soil temperature, and carbon flux at a ponderosa pine forest in central Oregon[J]. Agricultural and Forest Meteorology, 2016, 226: 161-173.
KIM Y, C STILL J, HANSON C V, et al.. Canopy skin temperature variations in relation to climate, soil temperature, and carbon flux at a ponderosa pine forest in central Oregon[J]. Agricultural and Forest Meteorology, 2016, 226: 161-173.
[5] [5] YANGA J, BUSEN H, SCHERB H, et al.. Modeling of radon exhalation from soil influenced by environmental parameters[J]. Science of The Total Environment, 2019, 656: 1304-1311.
YANGA J, BUSEN H, SCHERB H, et al.. Modeling of radon exhalation from soil influenced by environmental parameters[J]. Science of The Total Environment, 2019, 656: 1304-1311.
[6] [6] BHADANI P, VASHISHT V, SOIL MOISTURE. Temperature and humidity measurement using arduino [C]. The 9th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, 2019: 567-571.
BHADANI P, VASHISHT V, SOIL MOISTURE. Temperature and humidity measurement using arduino [C]. The 9th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, 2019: 567-571.
[7] [7] HU G, LIN Z, WU X, et al.. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet plateau of China[J]. Journal of Arid Land, 2016, 8 (2): 232-240.
HU G, LIN Z, WU X, et al.. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet plateau of China[J]. Journal of Arid Land, 2016, 8 (2): 232-240.
[8] [8] LIANG L L, RIVEROS-IREGUI D A, EMANUEL R E, et al.. A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions[J]. Geophys. Res, 2017, 119: 407-417
LIANG L L, RIVEROS-IREGUI D A, EMANUEL R E, et al.. A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions[J]. Geophys. Res, 2017, 119: 407-417
[12] [12] MIHALAKAKOU G. On estimating soil surface temperature profiles[J]. Energy and Buildings, 2002, 34(3): 251-259.
MIHALAKAKOU G. On estimating soil surface temperature profiles[J]. Energy and Buildings, 2002, 34(3): 251-259.
[13] [13] KISI O, SANIKHANI H. Modellinglong-termmonthlytemperaturesby several data-driven methods using geographical inputs[J]. Int. J. Climatol, 2015, 35 (13): 3834-3846.
KISI O, SANIKHANI H. Modellinglong-termmonthlytemperaturesby several data-driven methods using geographical inputs[J]. Int. J. Climatol, 2015, 35 (13): 3834-3846.
[14] [14] HUR S O, KIM W T, JUNG KH, et al.. Estimation of Soil Surface Temperature by Heat Flux in Soil[J]. Korean Journal of Soil Science & Fertilizer, 2004, 37(3): 131-135.
HUR S O, KIM W T, JUNG KH, et al.. Estimation of Soil Surface Temperature by Heat Flux in Soil[J]. Korean Journal of Soil Science & Fertilizer, 2004, 37(3): 131-135.
[15] [15] MOAZENZADEH R, MOHAMMADI B. Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature[J]. Geoderma, 2019, 353 (11): 152-171
MOAZENZADEH R, MOHAMMADI B. Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature[J]. Geoderma, 2019, 353 (11): 152-171
[16] [16] DELBARI M, SHARIFAZARI S, MOHAMMADI E. Modeling daily soil temperature over diverse climate conditions in Iran-a comparison of multiple linear regression and support vector regression techniques[J]. Theoretical and Applied Climatology, 2019, 135 (3-4): 991-1001.
DELBARI M, SHARIFAZARI S, MOHAMMADI E. Modeling daily soil temperature over diverse climate conditions in Iran-a comparison of multiple linear regression and support vector regression techniques[J]. Theoretical and Applied Climatology, 2019, 135 (3-4): 991-1001.
[17] [17] LI G, LI W, TIAN X, et al.. Short-term electricity load forecasting based on the xgboost algorithm[J]. Smart Grid, 2017, 7 (4): 274-285.
LI G, LI W, TIAN X, et al.. Short-term electricity load forecasting based on the xgboost algorithm[J]. Smart Grid, 2017, 7 (4): 274-285.
[18] [18] JI S, WANG X, ZHAO W, et al.. An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise[J]. Mathematical Problems in Engineering, 2019, 2019 (Article ID 8503252): 1-15.
JI S, WANG X, ZHAO W, et al.. An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise[J]. Mathematical Problems in Engineering, 2019, 2019 (Article ID 8503252): 1-15.
[19] [19] ALBERTOTORRES-BARRNA, ALONSO , DORRONSOROAB J R. Regression tree ensembles for wind energy and solar radiation prediction[J]. Neurocomputing, 2017, 326-327 (1): 151-160.
ALBERTOTORRES-BARRNA, ALONSO , DORRONSOROAB J R. Regression tree ensembles for wind energy and solar radiation prediction[J]. Neurocomputing, 2017, 326-327 (1): 151-160.
[20] [20] ZHANG J, ZHU Y, ZHANG X, et al.. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas[J]. Journal of Hydrology, 2018, 561 (6): 918-929.
ZHANG J, ZHU Y, ZHANG X, et al.. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas[J]. Journal of Hydrology, 2018, 561 (6): 918-929.
[21] [21] QING X, NIU Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148 (4): 461-468.
QING X, NIU Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148 (4): 461-468.
[22] [22] LI Q L, HAO H B, ZHAO Y, et al.. GANs-LSTM model for soil temperature estimation from meteorological: a new approach[J]. IEEE ACCESS, 2020, 8: 59427-59443.
LI Q L, HAO H B, ZHAO Y, et al.. GANs-LSTM model for soil temperature estimation from meteorological: a new approach[J]. IEEE ACCESS, 2020, 8: 59427-59443.
Get Citation
Copy Citation Text
LI Qing-liang, CAI Kai-xuan, GENG Qing-tian, LIU Guang-jie, SUN Ming-yu, ZHANG Yu, YU Fan-hua. Estimation of soil temperature based on XGBoost and LSTM methods[J]. Optics and Precision Engineering, 2020, 28(10): 2337
Category:
Received: Mar. 16, 2020
Accepted: --
Published Online: Nov. 25, 2020
The Author Email: Qing-liang LI (liqingliang@mail.ccsfu.edu.cn)