Journal of Advanced Dielectrics, Volume. 15, Issue 1, 2440016(2025)

Effect of (Al3+/Ta5+) co-doped on dielectric properties of CdCu3Ti4O12 ceramics

Huan Liu... Zhanhui Peng*, Yulin Chen, Bi Chen, Di Wu, Lingling Wei, Pengfei Liang, Xiaolian Chao** and Zupei Yang*** |Show fewer author(s)
References(51)

[1] X. Zhao, L. Ren, L. Yang, S. Li, R. Liao, W. Li, J. Li. Structure and dielectric relaxations of CaCu3Ti4O12 ceramics by heat treatments in different atmospheres. IEEE Trans. Dielectr. Electr. Insul., 24, 764(2017).

[2] P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, K. Wu, Z. Wang, J. Li. Improved dielectric and nonlinear properties of CaCu3Ti4O12 ceramics with Cu-rich phase at grain boundary layers. Ceram. Int., 45, 15082(2019).

[3] L. Liu, S. Ren, J. Liu, F. Han, J. Zhang, B. Peng, D. Wang, A. A. Bokov, Z. G. Ye. Localized polarons and conductive charge carriers: Understanding CaCu3Ti4O12 over a broad temperature range. Phys. Rev. B, 99, 094110(2019).

[4] J. Boonlakhorn, P. Kidkhunthod, N. Chanlek, P. Thongbai. (Al3+, Nb5+) co–doped CaCu3Ti4O12: An extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity. J. Eur. Ceram. Soc., 38, 137(2018).

[5] J. Jumpatam, W. Somphan, J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, S. Maensiri, X. M. Chen. Non-Ohmic properties and electrical responses of grains and grain boundaries of Na1∕2Y1∕2Cu3Ti4O12 ceramics. J. Am. Ceram. Soc., 100, 157(2016).

[6] W. Hu, Y. Liu, R. L. Withers, T. J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater., 12, 821(2013).

[7] Z. Peng, P. Liang, X. Wang, H. Peng, X. Chen, Z. Yang, X. Chao. Fabrication and characterization of CdCu3Ti4O12 ceramics with colossal permittivity and low dielectric loss. Mater. Lett., 210, 301(2018).

[8] S. Guillemet-Fritsch, Z. Valdez-Nava, C. Tenailleau, T. Lebey, B. Durand, J. Y. Chane-Ching. Colossal permittivity in ultrafine grain size BaTiO3−x and Ba0.95La0.05TiO3−x materials. Adv. Mater., 20, 551(2008).

[9] J. Boonlakhorn, N. Chanlek, J. Manyam, P. Srepusharawoot, S. Krongsuk, P. Thongbai. Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics. J. Adv. Ceram., 10, 1243(2021).

[10] P. Miao, J. Wang, L. He, L. Zhang. Excellent capacitor varistor properties in lead free CaCu3Ti4O12-SrTiO3 system with a wrinkle structure. ACS Appl. Mater. Interfaces, 43, 48781(2020).

[11] J. Zhang, Y. Li, Q. Yang, Y. Yang, F. Meng, T. Wang, Z. Xia. A structural perspective on giant permittivity CaCu3Ti4O12: One way to quantum dielectric physics in solids. Open Ceram, 6, 2666(2021).

[12] Y. Song, X. Wang, X. Zhang, X. Qi, Z. Liu, L. Zhang, Y. Zhang, Y. Wang, Y. Sui, B. Song. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature. Appl. Phys. Lett., 109, 142903(2016).

[13] C. Zhao, J. Wu. Effects of secondary phases on the high-performance colossal permittivity in titanium dioxide ceramics. ACS Appl. Mater. Interfaces, 10, 3680(2018).

[14] J. Li, F. Li, X. Zhu, D. Lin, Q. Li, W. Liu, Z. Xu. Colossal dielectric permittivity in hydrogen-reduced rutile TiO2 crystals. J. Alloys Compd., 692, 375(2017).

[15] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem., 151, 323(2000).

[16] K. Prompa, E. Swatsitang, T. Putjuso. Very low loss tangent and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by the sol-gel process. J. Mater. Sci.: Mater. Electron., 28, 15033(2017).

[17] D. Lu, X. Yu, J. Liu. Mixed-valent structure, dielectric properties and defect chemistry of Ca1−3x∕2TbxCu3Ti4−xTbxO12 ceramics. Ceram. Int., 43, 8664(2017).

[18] J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai. Significantly improved non-Ohmic and giant dielectric properties of CaCu3−xZnxTi4O12 ceramics by enhancing grain boundary response. Ceram. Int., 43, 2705(2017).

[19] Z. Peng, P. Liang, Y. Xiang, H. Peng, X. Chao, Z. Yang. Effect of Zr doping on dielectric properties and grain boundary response of CdCu3Ti4O12 ceramics. Ceram. Int., 44, 20311(2018).

[20] J. Wang, Z. Lu, Z. Chen. The novel effects of Cu-deficient on the dielectric properties and voltage–current nonlinearity in CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B, 243, 1(2019).

[21] J. Boonlakhorn, P. Kidkhunthod, P. Thongbai. Significantly improved giant dielectric response in giant dielectric response in CaCu2.95Ni0.05Ti4−xGexO12 (x=0.05, 0.10) ceramics. Mater. Today Commun., 21, 100633(2019).

[22] J. Boonlakhorn, P. Thongbai. Dielectric properties, nonlinear electrical response and microstructural evolution of CaCu3Ti4−xSnxO12 ceramics prepared by a double ball-milling process. Ceram. Int., 46, 4952(2020).

[23] R. Schmidt, M. C. Stennett, N. C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D. C. Sinclair. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc., 32, 3313(2012).

[24] X. Wang, B. Zhang, L. Sun, W. Qiao, Y. Hao, Y. Hu, X. Wang. Colossal dielectric properties in (Ta0.5Al0.5)xTi1−xO2 ceramics. J. Alloys Compd., 745, 856(2018).

[25] J. Li, F. Li, Y. Zhuang, L. Jin, L. Wang, X. Wei, Z. Xu, S. Zhang. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J. Appl. Phys., 116, 074105(2014).

[26] J. Boonlakhorn, P. Srepusharawoot, P. Thongbai. Distinct roles between complex defect clusters and insulating grain boundary on dielectric loss behaviors of (In3+/Ta5+) co-doped CaCu3Ti4O12 ceramics. Results Phys., 16, 102886(2020).

[27] J. Boonlakhorn, P. Thongbai. Substantially enhanced varistor properties and dielectric response in (Zn2+, Sn4+) co-doped CaCu3Ti4O12 ceramics. Ceram. Int., 45, 22596(2019).

[28] B. Guo, P. Liu, X. Cui, Y. Song. Enhancement of breakdown electric field and DC bias of (In0.5Nb0.5)0.005(Ti1−xZrx)0.995O2 colossal permittivity ceramics. J. Alloys Compd., 740, 1108(2018).

[29] J. Sun, C. Xu, X. Zhao, J. Liang, R. Liao. Improved dielectric properties of indium and tantalum co-doped CaCu3Ti4O12 ceramic prepared by spark plasma sintering. IEEE Trans. Dielectr. Electr. Insul., 27, 1400(2020).

[30] H. M. Kotb, M. M. Ahmad, A. Alshoaibi, K. Yamada. Dielectric response and structural analysis of (A3+, Nb5+) cosubstituted CaCu3Ti4O12 ceramics (A: Al and Bi). Materials, 13, 5822(2020).

[31] Z. Peng, D. Wu, P. Liang, X. Zhou, J. Wang, J. Zhu, X. Chao, Z. Yang. Grain boundary engineering that induces ultrahigh permittivity and decreased dielectric loss in CdCu3Ti4O12 ceramics. J. Am. Ceram. Soc., 103, 1230(2019).

[32] Z. Peng, J. Wang, F. Zhang, S. Xu, X. Lei, P. Liang, L. Wei, D. Wu, X. Chao, Z. Yang. High energy storage and colossal permittivity CdCu3Ti4O12 oxide ceramics. Ceram. Int., 48, 4255(2022).

[33] Z. Peng, P. Liang, J. Wang, X. Zhou, J. Zhu, X. Chao, Z. Yang. Interfacial effect inducing thermal stability and dielectric response in CdCu3Ti4O12 ceramics. Solid State Ion., 348(2020).

[34] Z. Peng, P. Liang, X. Chen, Z. Yang, X. Chao. High thermal stability and excellent dielectric properties of a novel X8R-type CdCu3Ti4O12 ceramics through a sol-gel technique. Mater. Res. Bull., 98, 340(2018).

[35] N. Zhao, P. Liang, L. Wei, L. Yang, Z. Yang. Synthesis and dielectric anomalies of CdCu3Ti4O12 ceramics. Ceram. Int., 41, 8501(2015).

[36] L. Yuan, W. Hu, S. Fang, G. Li, X. Wang, X. Wu, W. Han, L. Li. CdO-CuO-TiO2 ternary dielectric systems: Subsolidus phase diagram and the effects of Cu segregation. J. Eur. Ceram. Soc., 38, 4978(2018).

[37] P. Mao, J. Wang, L. Zhang, Z. Wang, F. Kang, S. Liu, D. B. K. Lim, X. Wang, H. Gong. Significantly enhanced breakdown field with high grain boundary resistance and dielectric response in 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc., 40, 3011(2020).

[38] M. A. De La Rubia, P. Leret, A. Del Campo, R. E. Alonso, A. R. López-Garcia, J. F. Fernández, J. De Frutos. Dielectric behaviour of Hf-doped CaCu3Ti4O12 ceramics obtained by conventional synthesis and reactive sintering. J. Eur. Ceram. Soc., 32, 1691(2012).

[39] L. Zhou, Z. Peng, J. Zhu, Q. Shi, P. Liang, L. Wei, D. Wu, X. Chao, Z. Yang. High temperature stability and low dielectric loss in colossal permittivity TiO2 based ceramics co-doped with Ag+ and Mo6+. Mater. Chem. Phys., 295, 127072(2023).

[40] L. Ni, M. Fu, Y. Zhang. Dielectric relaxation and relevant mechanism in giant dielectric constant Sm2∕3Cu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron., 29, 17737(2018).

[41] P. Thomas, K. Dwarakanath, K. B. R. Varma, T. R. N. Kutty. Nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J. Phys. Chem. Solids, 69, 2594(2008).

[42] R. Schmidt, S. Pandey, P. Fiorenza, D. C. Sinclair. Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics. RSC Adv., 3, 14580(2013).

[43] P. Kum-Onsa, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri. Na1∕3Ca1∕3Bi1∕3Cu3Ti4O12: A new giant dielectric perovskite ceramic in ACu3Ti4O12 compounds. J. Eur. Ceram. Soc., 35, 1441(2015).

[44] P. Liu, Y. He, J. P. Zhou, C. H. Mu, H. W. Zhang. Dielectric relaxation and giant dielectric constant of Nb-doped CaCu3Ti4O12 ceramics under dc bias voltage. Phys. Status Solidi A, 206, 562(2009).

[45] H. Moreno, J. A. Cortés, F. M. Praxedes, S. M. Freitas, M. V. S. Rezende, A. Z. Simões, V. C. Teixeira, M. A. Ramirez. Tunable photoluminescence of CaCu3Ti4O12 based ceramics modified with tungsten. J. Alloys Compd., 850, 156652(2021).

[46] Z. Li, J. Wu, D. Xiao, J. Zhu, W. Wu. Colossal permittivity in titanium dioxide ceramics modified by tantalum and trivalent elements. Acta Mater., 103, 243(2016).

[47] L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu. Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys., 139, 844(2013).

[48] C. Wang, W. Ni, D. Zhang, X. Sun, J. Wang, H. Li, N. Zhang. Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range. J. Electroceramics, 36, 46(2016).

[49] C.-C. Wang, M.-N. Zhang, K.-B. Xu, G.-J. Wang. Origin of high-temperature relaxor-like behavior in CaCu3Ti4O12. J. Appl. Phys., 112, 034109(2012).

[50] Z. Peng, P. Liang, X. Wang, H. Peng, Y. Xiang, X. Chao, Z. Yang. Copper cadmium titanate prepared by different methods: Phase formation, dielectric properties and relaxor behaviors. Ceram. Int., 44, 7814(2018).

[51] H. Peng, P. Liang, X. Zhou, Z. Peng, Y. Xiang, X. Chao, Z. Yang. Good thermal stability, giant permittivity, and low dielectric loss for X9R-type (Ag1∕4Nb3∕4)0.005Ti0.995O2 ceramics. J. Am. Ceram. Soc., 102, 970(2018).

Tools

Get Citation

Copy Citation Text

Huan Liu, Zhanhui Peng, Yulin Chen, Bi Chen, Di Wu, Lingling Wei, Pengfei Liang, Xiaolian Chao, Zupei Yang. Effect of (Al3+/Ta5+) co-doped on dielectric properties of CdCu3Ti4O12 ceramics[J]. Journal of Advanced Dielectrics, 2025, 15(1): 2440016

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Jan. 9, 2024

Accepted: May. 23, 2024

Published Online: Feb. 18, 2025

The Author Email: Peng Zhanhui (pzh@snnu.edu.cn), Chao Xiaolian (chaoxl@snnu.edu.cn), Yang Zupei (yangzp@snnu.edu.cn)

DOI:10.1142/S2010135X24400162

Topics