Optics and Precision Engineering, Volume. 31, Issue 17, 2584(2023)

Multidimensional attention mechanism and selective feature fusion for image super-resolution reconstruction

Jian WEN1... Jianfei SHAO1,*, Jie LIU2, Jianlong SHAO1, Yuhang FENG1 and Rong YE1 |Show fewer author(s)
Author Affiliations
  • 1Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming650500, China
  • 2Yunnan Police Unmanned System Innovation Research Institute, Yunnan Police Officer Academy, Kunming6503, China
  • show less
    References(43)

    [1] [1] 蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151.(in Chinese). doi: 10.37188/OPE.20212901.0142

    [2] W W ZOU, P C YUEN. Very low resolution face recognition problem. IEEE Transactions on Image Processing, 21, 327-340(2012).

    [3] W SHI, J CABALLERO, C LEDIG et al. Cardiac image super -resolution with global correspondence using multi -atlas patchmatch, 8151, 9-16(2013).

    [4] [4] 朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.13482/j.issn1001-7011.2019.05.004ZHUF ZH, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725.(in Chinese). doi: 10.13482/j.issn1001-7011.2019.05.004

    [5] M C CHIANG, T E BOULT. Efficient image warping and super-resolution, 56-61(2002).

    [6] V K HA, J C REN, X Y XU et al. Deep learning based single image super-resolution: a survey. International Journal of Automation and Computing, 16, 413-426(2019).

    [7] [7] 孙玉宝, 费选, 韦志辉, 等. 基于前向后向算子分裂的稀疏性正则化图像超分辨率算法[J]. 自动化学报, 2010, 36(9): 1232-1238. doi: 10.3724/sp.j.1004.2010.01232SUNY B, FEIX, WEIZH H, et al. Sparsity regularized image super-resolution model via forward-backward operator splitting method[J]. Acta Automatica Sinica, 2010, 36(9): 1232-1238.(in Chinese). doi: 10.3724/sp.j.1004.2010.01232

    [8] [8] 潘宗序, 禹晶, 胡少兴, 等. 基于多尺度结构自相似性的单幅图像超分辨率算法[J]. 自动化学报, 2014, 40(4):594-603. doi: 10.3724/SP.J.1004.2014.02233PANZ X, YUJ, HUSH X, et al. Single image super resolution based on multi-scale structural self-similarity[J]. Acta Automatica Sinica, 2014, 40(4):594-603.(in Chinese). doi: 10.3724/SP.J.1004.2014.02233

    [9] C DONG, C C LOY, K M HE et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [10] C DONG, C C LOY, X O TANG. Accelerating the Super-resolution Convolutional Neural Network. Computer Vision-ECCV 2016, 391-407(2016).

    [11] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    [12] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).

    [13] J KIM, J K LEE, K M LEE. Deeply-recursive convolutional network for image super-resolution, 1637-1645(2016).

    [14] Y TAI, J YANG, X M LIU et al. MemNet: a persistent memory network for image restoration, 4549-4557(2017).

    [15] H KIM et al. Enhanced deep residual networks for single image super-resolution, 1132-1140(2017).

    [16] Y L ZHANG, K P LI, K LI et al. Image Super-resolution using Very Deep Residual Channel Attention Networks. Computer Vision-ECCV 2018, 294-310(2018).

    [17] [17] 程德强, 赵佳敏, 寇旗旗, 等. 多尺度密集特征融合的图像超分辨率重建[J]. 光学 精密工程, 2022, 30(20): 2489-2500. doi: 10.37188/OPE.20223020.2489CHENGD Q, ZHAOJ M, KOUQ Q, et al. Multi-scale dense feature fusion network for image super-resolution[J]. Opt. Precision Eng., 2022, 30(20): 2489-2500.(in Chinese). doi: 10.37188/OPE.20223020.2489

    [18] J C LI, F M FANG, K F MEI et al. Multi-scale Residual Network for Image Super-resolution. Computer Vision-ECCV 2018, 527-542(2018).

    [19] B KANG, K A SOHN. Fast Accurate and Lightweight Super-resolution with Cascading Residual Network. Computer Vision-ECCV 2018, 256-272(2018).

    [20] C LEDIG, L THEIS, F HUSZÁR et al. Photo-realistic single image super-resolution using a generative adversarial network, 105-114(2017).

    [21] X T WANG, K YU, S X WU et al. ESRGAN Enhanced Super-resolution Generative Adversarial Networks. Lecture Notes in Computer Science, 63-79(2019).

    [22] C W TIAN, R B ZHUGE, Z H WU et al. Lightweight image super-resolution with enhanced CNN. Knowledge-Based Systems, 205, 106235(2020).

    [23] X LI, W H WANG, X L HU et al. Selective kernel networks, 510-519(2020).

    [25] R TIMOFTE, E AGUSTSSON, G L VAN et al. NTIRE 2017 challenge on single image super-resolution: methods and results, 1110-1121(2017).

    [26] M BEVILACQUA, A ROUMY, C GUILLEMOT et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding, 10(2012).

    [27] R ZEYDE, M ELAD, M PROTTER. On Single Image Scale-up using Sparse-Representations. Curves and Surfaces, 711-730(2012).

    [28] D MARTIN, C FOWLKES et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, 416-423(2002).

    [29] J B HUANG, A SINGH, N AHUJA. Single image super-resolution from transformed self-exemplars, 5197-5206(2015).

    [30] K ZHANG, W M ZUO, L ZHANG. Learning a single convolutional super-resolution network for multiple degradations, 3262-3271(2018).

    [31] Z WANG, A C BOVIK, H R SHEIKH et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 600-612(2004).

    [32] J SUN, Z B XU, H Y SHUM. Image super-resolution using gradient profile prior. AK, 1-8(2008).

    [33] R TIMOFTE, S V DE, G L VAN. A+: Adjusted Anchored Neighborhood Regression for Fast Super-resolution, 111-126(2015).

    [34] S SCHULTER, C LEISTNER, H BISCHOF. Fast and accurate image upscaling with super-resolution forests, 3791-3799(2015).

    [36] K ZHANG, W M ZUO, Y J CHEN et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, 3142-3155(2017).

    [38] X J MAO, C H SHEN, Y B YANG. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, 2810-2818(2016).

    [39] Y F WANG, L J WANG, H Y WANG et al. End-to-end image super-resolution via deep and shallow convolutional networks, 31959-31970(2019).

    [40] X YANG, H Y MEI, J Q ZHANG et al. DRFN: deep recurrent fusion network for single-image super-resolution with large factors, 328-337(2018).

    [41] H LIU, Z L FU, J G HAN et al. Single image super-resolution using multi-scale deep encoder-decoder with phase congruency edge map guidance. Information Sciences, 473, 44-58(2019).

    [42] C W TIAN, Y XU, W M ZUO et al. Coarse-to-fine CNN for image super-resolution. IEEE Transactions on Multimedia, 23, 1489-1502(2021).

    [43] C W TIAN, Y XU, W M ZUO et al. Asymmetric CNN for image superresolution, 3718-3730(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jian WEN, Jianfei SHAO, Jie LIU, Jianlong SHAO, Yuhang FENG, Rong YE. Multidimensional attention mechanism and selective feature fusion for image super-resolution reconstruction[J]. Optics and Precision Engineering, 2023, 31(17): 2584

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Nov. 22, 2022

    Accepted: --

    Published Online: Oct. 9, 2023

    The Author Email: SHAO Jianfei (469365367@qq.com)

    DOI:10.37188/OPE.20233117.2584

    Topics