Semiconductor Optoelectronics, Volume. 41, Issue 5, 611(2020)

Fabrication of Microlens Array and Its Application Progresses in Light Field Imaging

WU Liying*... QU Minni, FU Xuecheng, TIAN Miao, LIU Min, LI Jinxi and CHENG Xiulan |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(50)

    [1] [1] Horridge G A. The separation of visual axes in apposition compound eyes[J]. Philosophical Trans. of the Royal Society of London B: Biological Sciences, 1978, 285(1003): 1-59.

    [2] [2] Land M F. Variations in the structure and design of compound[J]. Facets of Vision, 1989, 3: 30-73.

    [3] [3] Gershun A. The light field[J]. Studies in Appl. Mathematics, 1939, 18(1/4): 51-151.

    [4] [4] Moore S, Gomez J, Lek D, et al. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique[J]. Microelectronic Engin., 2016, 162: 57-62.

    [5] [5] Popovic Z D, Sprague R A, Connell G N. Technique for monolithic fabrication of microlens arrays[J]. Appl. Opt., 1988, 27: 1281-1284.

    [6] [6] Di S, Lin H, Du R. An artificial compound eyes imaging system based on MEMS technology[C]// Proc. 2009 IEEE Inter. Conf. on Robotics and Biomimetics (ROBIO), 2009: 13-18.

    [7] [7] Daly D, Stevens R, Hutley M, et al. The manufacture of microlenses by melting photoresist[J]. Measurement Science and Technol., 1990, 1(8): 759.

    [8] [8] Audran S, Faure B, Mortini B, et al. Study of dynamical formation and shape of micro lenses formed by the reflow method[J]. Proc. SPIE, 2006: 61534D.

    [9] [9] Albero J, Perrin S, Bargiel, et al. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level[J]. Optics Express, 2015, 23(9): 11702-11712.

    [10] [10] Luo Y, Wang L, Ding Y, et al. Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface[J]. Appl. Surface Science, 2013, 279: 36-40.

    [11] [11] Kim J Y, Brauer N B, Fakhfouri V, et al. Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique[J]. Optical Materials Express, 2011, 1(2): 259-269.

    [12] [12] Kim J Y, Pfeiffer K, Voigt A, et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique[J]. J. of Materials Chemistry, 2012, 22(7): 3053-3058.

    [13] [13] Zhu X, Zhu L, Chen H, et al. Fabrication of high numerical aperture microlens array based on drop-on-demand generating of water-based molds[J]. Optics & Laser Technol., 2015, 68: 23-27.

    [14] [14] Kim J Y, Martin O C, Baek N S, et al. Simple and easily controllable parabolic-shaped microlenses printed on polymeric mesas[J]. J. Mater. Chem.: C, 2013, 1(11): 2152-2157.

    [15] [15] Xia J, Qu D, Yang H, et al. Self assembly polymer microlens array for integral imaging[J]. Displays, 2010, 31(4/5): 186-190.

    [16] [16] Chang C Y, Yang S Y, Huang L S, et al. Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer[J]. Opt. Express, 2006, 14(13): 6253-6258.

    [17] [17] Pan C, Wu T, Chen M, et al. Hot embossing of micro-lens array on bulk metallic glass[J]. Sensors and Actuators A: Phys., 2008, 141(2): 422-431.

    [18] [18] Yao D, Nagarajan P, Li L, et al. A two-station embossing process for rapid fabrication of surface microstructures on thermoplastic polymers[J]. Polymer Engin. & Science, 2007, 47(4): 530-539.

    [19] [19] Albero J, Nieradko L, Gorecki C, et al. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques[J]. Opt. Express, 2009, 17(8): 6283-6292.

    [20] [20] Bitterli R, Scharf T, Herzig H-P, et al. Fabrication and characterization of linear diffusers based on concave micro lens arrays[J]. Opt. Express, 2010, 18(13): 14251-14261.

    [21] [21] Du G, Yang Q, Chen F, et al. Direct fabrication of seamless roller molds with gapless and shaped-controlled concave microlens arrays[J]. Opt. Lett., 2012, 37(21): 4404-4406.

    [22] [22] Meng X, Chen F, Yang Q, et al. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching[J]. Appl. Phys. A, 2015, 121(1): 157-162.

    [23] [23] Chen F, Liu H W, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Opt. Express, 2010, 18: 20334-20343.

    [24] [24] Hao B, Liu H, Chen F, et al. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surface[J]. Opt. Express, 2012, 20(12): 12939-12948.

    [25] [25] Yi X J, Zhang X Y, Li Y, et al. Microlens arrays formed by melting photoresist and ion beam milling[J]. Proc. SPIE, 1998: 249-253.

    [26] [26] Harriott L, Scotti R, Cummings K, et al. Micromachining of integrated optical structures[J]. Appl. Phys. Lett., 1986, 48(25): 1704-1706.

    [27] [27] Kley E B, Possner T, Goring R. Realization of micro-optic and integrated optic components by electron-beam-lithographic surface profiling and ion exchange in glass[J]. Inter. J. of Optoelectron., 1993, 8: 513-513.

    [28] [28] Fujita T, Nishihara H, Koyama J. Fabrication of micro lenses using electronbeam lithography[J]. Opt. Lett., 1981, 6(12): 613-615.

    [29] [29] Brinksmeier E, Autschbach L. Ball-end milling of free-form surfaces for optical mold inserts[C]// Proc. of 19th Annual Meeting of American Society for Precision Engin. (ASPE), 2004: 88-91.

    [30] [30] Yan J, Zhang Z, Kuriyagawa T, et al. Fabricating micro-structured surface by using single-crystalline diamond endmill[J]. The Inter. J. of Adv. Manufacturing Technol., 2010, 51(9): 957-964.

    [31] [31] Fang F, Zhang X, Hu X. Cylindrical coordinate machining of optical freeform surfaces[J]. Opt. Express, 2008, 16(10): 7323-7329.

    [32] [32] Zhou J, Li L, Naples N, et al. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process[J]. J. of Micromechanics and Microengin., 2013, 23(7): 075010.

    [33] [33] Chen F Z, Chen C H, Wu C H, et al. Development of a double-sided micro lens array for micro laser projector application[J]. Opt. Rev., 2012, 19(4): 238-241.

    [35] [35] Lippmann M G. 1908. Epreuves reversible donnant la sensation du relief[J]. J. Phys, 7, 821-825.

    [36] [36] Ives F E. Parallax stereogram and process of making same[P]. US Patent 725, 567. http://www.google.com/patents/US725567.

    [37] [37] Adelson E H, Wang J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14(2): 99-106.

    [38] [38] Ng R. Fourier slice photography[C]// Proc. of the Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH05), 2005: 735-744.

    [39] [39] Ng R, Levoy M, Bredif M, et al. Light field photography with a hand-held plenoptic camera[EB/OL]. https://graphics.stanford.edu/papers/lfcamera/lfcamera-150dpi.pdf.

    [40] [40] Ng R. Digital light field photography[D]. Stanford: Stanford University, 2006.

    [41] [41] Levoy M, Ng R, Adams A, et al. Light field microscopy[J]. ACM Trans. on Graphics (TOG), 2006, 25(3): 924-934.

    [42] [42] Lumsdaine A, Georgiev T. The focused plenoptic camera[C]//Proc. of the IEEE International Conference on Computational Photography (ICCP09), 2009: 1-8.

    [43] [43] Perwass C, Wietzke L. Single lens 3D-camera with extended depth-of-field[C]//Proc. of the SPIE Conference on Electronic Imaging (SPIE12), 2012: 22-26.

    [44] [44] Bishop T E, Favaro P. The light field camera: Extended depth of field, aliasing and superresolution[J]. IEEE Trans. Pattern Anal. Mach.Intell., 2012, 34(5): 972-986.

    [45] [45] Wanner S, Goldluecke B. Globally consistent depth labeling of 4D lightfields[C]//Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR12), 2012: 41-48.

    [46] [46] Shroff S A, Berkner K. Image formation analysis and high resolution image reconstruction for plenoptic imaging systems[J]. Appl. Opt., 2013, 52: D22-D31.

    [47] [47] Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Opt. Express, 2013, 21(21): 25418-25439.

    [48] [48] Nava P F, Luke J P. Simultaneous estimation of superresolved depth and all-in-focus images from a plenoptic camera[C]//Proc. of the 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV09), 2009: 1-4.

    [49] [49] Georgiev T, Chunev G, Lumsdaine A. Superresolution with the focused plenoptic camera[C]//Proc. of the SPIE Conf. on Computational Imaging (SPIE11), 2011, 7873: 1105-1117.

    [50] [50] Yu Z, Yu J, Lumsdaine A, et al. An analysis of color demosaicing in plenoptic cameras[C]//Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR12), 2012: 901-908.

    [51] [51] Liang Chia-Kai, Ramamoorthi R. A light transport framework for lenslet light field cameras[J]. ACM Trans. on Graphics, 2015, 34(2): article 16.

    Tools

    Get Citation

    Copy Citation Text

    WU Liying, QU Minni, FU Xuecheng, TIAN Miao, LIU Min, LI Jinxi, CHENG Xiulan. Fabrication of Microlens Array and Its Application Progresses in Light Field Imaging[J]. Semiconductor Optoelectronics, 2020, 41(5): 611

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 13, 2020

    Accepted: --

    Published Online: Jan. 19, 2021

    The Author Email: Liying WU (lynn_wu@sjtu.edu.cn)

    DOI:10.16818/j.issn1001-5868.2020.05.002

    Topics