Laser Journal, Volume. 45, Issue 3, 118(2024)
Multiscale fusion single image superresolution reconstruction based on attention mechanism
[1] [1] Zhu S Y , Zeng B , Liu G H , et al. Image interpolation based on non-local geometric similarities[ C]∥2015 IEEE International Conference on Multimedia and Expo ( ICME) . IEEE , 2015 : 1-6.
[2] [2] Ledig C , Theis L , Huszár F , et al. Photo -realistic single image super - resolution using a generative adversarial net- work[ C] ∥Proceedings of the IEEE conference on comput- er vision and pattern recognition. 2017 : 4681-4690.
[3] [3] Mehdi S. M. Sajjadi , B. Sch?lkopf , and M. Hirsch. En- hancenet : Single image super-resolution through automated texture synthesis[ C]// 2017 IEEE International Conference on In Computer Vision ( ICCV) , IEEE , 2017 : 4501-4510
[4] [4] Wang X T , Yu K , Wu S X , et al. ESRGAN:enhanced su- per-resolution generative adversarial networks[ C] ∥Leal - Taixé L , Roth S. Computer vision-ECCV 2018 workshops. Lecture notes in computer science. Cham : Springer , 2019 , 11133 : 63-79.
[5] [5] Soh J W , Gu Y P , Jo J , et al. Natural and Realistic Single Image Super - Resolution With Explicit Natural Manifold Discrimination[ C]//Proceedings of the IEEE/CVF confer- ence on computer vision and pattern recognition. 2019 : 8122- 8131.
[10] [10] Hou Q , Zhou D , Feng J. Coordinate attention for efficient mobile network design[J] . IEEE Transactions on Computer Science ,2021 ,56(2) : 13713- 13722.
[11] [11] Miyato T , Kataoka T , Koyama M , et al. Spectral normali- zation for generative adversarial networks [ J ] . arXiv pre- print arXiv:1802. 05957 , 2018.
[12] [12] Lai W S , Huang J B , Ahuja N , et al. Deep laplacian pyra- mid networks for fast and accurate super-resolution[ C] // Proceedin-gs of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu ,USA : IEEE , 2017 : 624 -632.
[14] [14] Yang guanci , Yang Jing , Li Shaobo , etc Improved CNN al- gorithm based on dropout and Adam optimizer[J] Journal of Huazhong University of science and technology : Natural Science Edition 2018 , 46 (7) : 122- 127.
[15] [15] Agustsson E , Timofte R. NTIRE 2017 challenge on single image super - resolution : dataset and study [ C] ∥Proceed- ings of the IEEE Conference on Computer Vision and Pat- tern RecognitionWorkshops. Honolulu ,USA : IEEE , 2017 : 126- 135.
[16] [16] Bevilacqua M , Roumy A , Guillemot C , et al. Low - com- plexity single-image super-resolution based on nonnegative neighbor embedding [ C] ∥Proceedings of the British Ma- chine Vision Conference 2012 ,September 3-7 , 2012 , Sur- rey , UK. London : British Machine Vision Association , 2012 : 135. 1- 135. 10.
[17] [17] Zeyde R , Elad M , Protter M. On single image scale-up u- sing sparse-representations[ C]∥Boissonnat J D ,Chenin P , Cohen A , et al. Curves and surfaces. Lecture notes in com- puter science. Heidelberg : Springer , 2012 , 6920 : 711 - 730.
[18] [18] Martin D , Fowlkes C , Tal D , et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [ C]//Proceedings Eighth IEEE International Conference on Computer Vision , July 7- 14 , 2001 , Vancouver , BC , Can- ada. New York :IEEE Press , 2001 : 416-423.
Get Citation
Copy Citation Text
SHENG Yue, XIN Yuelan, WANG Qingqing, XIE Qiqi. Multiscale fusion single image superresolution reconstruction based on attention mechanism[J]. Laser Journal, 2024, 45(3): 118
Category:
Received: Jul. 21, 2023
Accepted: --
Published Online: Oct. 15, 2024
The Author Email: Yuelan XIN (xinyue001112@163.com)