Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 594(2025)
Pyrophotocatalytic Performance of g-C3N4/NaNbO3 Composite Material for Degradation of Mixed Dyes
[1] [1] WU Z, XU T S, ZHANG L H, et al. Ferroelectric BaTiO3/Pr2O3 heterojunction harvesting room-temperature cold-hot alternation energy for efficiently pyrocatalytic dye decomposition[J]. J Adv Ceram, 2024, 13(1): 44-52.
[3] [3] ZHENG Y, WU X Y, ZHANG Y C, et al. Highly efficient harvesting of vibration energy for complex wastewater purification using Bi5Ti3FeO15 with controlled oxygen vacancies[J]. Chem Eng J, 2023, 453: 139919.
[5] [5] ISMAIL M, WU Z, ZHANG L H, et al. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition[J]. Chemosphere, 2019, 228: 212-218.
[6] [6] GAO F, CHEN X , YIN K , et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles[J]. Adv Mater, 2007, 19(19): 2889-2892.
[7] [7] ZHANG Y, PHUONG P T T, ROAKE E, et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials[J]. Joule, 2020, 4(2): 301-309.
[8] [8] LIN Y J, KHAN I, SAHA S, et al. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates[J]. Nat Commun, 2021, 12(1): 180.
[9] [9] YOU H L, JIA Y M, WU Z, et al. Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation[J]. Nat Commun, 2018, 9(1): 2889.
[10] [10] SUDHIR EKANDE O, KUMAR M. Self-powered piezoelectric NaNbO3 induced band position rearrangement and electrocatalysis in MoS2/NaNbO3 heterojunction for generation of reactive oxygen species for organic pollutant removal[J]. Chem Eng J, 2023, 458: 141454.
[11] [11] QIAN W Q, WU Z, JIA Y M, et al. Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods[J]. Electrochem Commun, 2017, 81: 124-127.
[12] [12] ZHANG S C, ZHANG B, CHEN D, et al. Promising pyro-photo-electric catalysis in NaNbO3via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system[J]. Nano Energy, 2021, 79: 105485.
[13] [13] LIU S M, LIU Z F, MENG Y. Doping regulates pyro-photo-electric catalysis to achieve efficient water splitting in Ba1−xSrxTiO3 through solar energy and thermal resources[J]. New J Chem, 2022, 46(36): 17292-17302.
[14] [14] JUNG J H, LEE M, HONG J I, et al. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator[J]. ACS Nano, 2011, 5(12): 10041-10046.
[15] [15] ZHANG Y, KUMAR S, MARKEN F, et al. Pyro-electrolytic water splitting for hydrogen generation[J]. Nano Energy, 2019, 58: 183-191.
[16] [16] ZHANG D, WU H T, BOWEN C R, et al. Recent advances in pyroelectric materials and applications[J]. Small, 2021, 17(51): e2103960.
[17] [17] LI S, ZHAO Z C, ZHAO J Z, et al. Recent advances of Ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications[J]. ACS Appl Nano Mater, 2020, 3(2): 1063-1079.
[18] [18] WANG Y, WANG S H, MENG Y Z, et al. Pyro-catalysis for tooth whitening via oral temperature fluctuation[J]. Nat Commun, 2022, 13(1): 4419.
[20] [20] QAMAR M A, JAVED M, SHAHID S, et al. Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review[J]. Heliyon, 2023, 9(1): e12685.
[21] [21] HAO Q, XIE C A, HUANG Y M, et al. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles[J]. Chin J Catal, 2020, 41(2): 249-258.
[22] [22] FAN G D, NING R S, LI X, et al. Mussel-inspired immobilization of photocatalysts with synergistic photocatalytic-photothermal performance for water remediation[J]. ACS Appl Mater Interfaces, 2021, 13(26): 31066-31076.
[23] [23] YOU H L, LI S Q, FAN Y L, et al. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles[J]. Nat Commun, 2022, 13: 6144.
[24] [24] ZHANG D D, QI J J, JI H D, et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution[J]. Chem Eng J, 2020, 400: 125918.
[25] [25] LIU J, WANG H Q, ANTONIETTI M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis[J]. Chem Soc Rev, 2016, 45(8): 2308-2326.
[26] [26] WANG S, YIN H T, WANG L, et al. Core-shell engineered g-C3N4 @ NaNbO3 for enhancing photocatalytic reduction of CO2[J]. Nanotechnology, 2024, 35(19): 195605.
[27] [27] XIE Z S, TANG X L, SHI J F, et al. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method[J]. Nano Energy, 2022, 98: 107247.
[28] [28] LIU D M, SONG Y W, XIN Z J, et al. High-piezocatalytic performance of eco-friendly (Bi1/2Na1/2)TiO3- based nanofibers by electrospinning[J]. Nano Energy, 2019, 65: 104024.
[29] [29] CHEN Z W, JIANG H, JIN W L, et al. Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed{001}facets for Rhodamine B degradation[J]. Appl Catal B Environ, 2016, 180: 698-706.
[30] [30] ZHU B C, ZHANG J F, JIANG C J, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Appl Catal B Environ, 2017, 207: 27-34.
[31] [31] QI J T, WIATOWSKA J, SKELDON P, et al. Chromium valence change in trivalent chromium conversion coatings on aluminium deposited under applied potentials[J]. Corros Sci, 2020, 167: 108482.
Get Citation
Copy Citation Text
XU Li, DENG Shuwen, ZHOU Xiaoju, WANG Huifeng, HU Zhenglong. Pyrophotocatalytic Performance of g-C3N4/NaNbO3 Composite Material for Degradation of Mixed Dyes[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 594
Category:
Received: Oct. 8, 2024
Accepted: Mar. 10, 2025
Published Online: Mar. 10, 2025
The Author Email: Shuwen DENG (5415112@qq.com)