Laser & Optoelectronics Progress, Volume. 55, Issue 3, 030007(2018)

Advances in Directional Control of Surface Plasmon Amplification by Stimulated Emission of Radiation

Jiaqi Chen, Guoqiu Yuan, Meng Wang, and Min Cao*
Author Affiliations
  • School of Science, Nantong University, Nantong, Jiangsu 226019, China
  • show less
    References(122)

    [1] Dou X J, Min C J, Zhang Y Q et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 36, 1026004(2016).

    [3] Wang Z L. A review on research progress in surface plasmons[J]. Progress in Physics, 29, 287-324(2009).

    [4] Pan J. The design of novel plasmonic waveguides, lasers and the study of optical properties of double-triangle nanoparticle arrays[D]. Nanjing: Nanjing University(2012).

    [5] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [8] Guo Q B, Liu X F, Qiu J R. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 44, 0703005(2017).

    [9] Gu Y, Wang L K, Gong Q H. A theoretical study of plasmonic-based quantum interference effects[J]. Scientia Sinica Physica, Mechanica & Astronomica, 43, 1120-1134(2013).

    [10] Li Z Y, Li J F. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures[J]. Chinese Science Bulletin, 56, 2631-2661(2011).

    [11] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 54, 030002(2017).

    [17] Gu Y, Wang L J, Gong Q H. A theoretical study of plasmonic-based quantum interference effects[J]. Scientia Sinica Physica, Mechanica & Astronomica, 43, 1120(2013).

    [20] Chen H, Shao L, Woo K C et al[J]. Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer Journal of Physical Chemistry C, 2012, 14088-14095.

    [22] Manjavacas A. Abajo F J G, Nordlander P. Quantum plexcitonics: strongly interacting plasmons and excitons[J]. Nano Letters, 11, 2318-2323(2011).

    [23] Chen H Y, Liu K W, Jiang M M et al[J]. Tunable hybridized quadrupole plasmons and their coupling with excitons in znmgo/ag system Journal of Physical Chemistry C, 2014, 679-684.

    [26] Cao X W, Zhang L, Yu Y S et al. Application of micro-optical components fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 44, 0102004(2017).

    [27] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).

    [32] Li Z Q, Peng T, Zhang M et al. Nanolaser based on hybrid plasmonic wavguide[J]. Chinese Journal of Lasers, 43, 1001005(2016).

    [40] Shishkov V Y, Zyablovskii A A, Andrianov E S et al. Wide-aperture planar lasers[J]. Journal of Communications Technology and Electronics, 61, 551-573(2016).

    [46] Ning C Z. Semiconductor nanolasers[J]. Progress in Physics, 31, 145-160(2011).

    [47] Kinkhabwala A, Yu Z, Fan S et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [50] Pelton M, Bryant G. Introduction to metal-nanoparticle plasmonics[M]. New Jersey: John Wiley & Sons(2013).

    [52] Jule L. Mal'nev V, Mesfin B, et al. Fano-like resonance and scattering in dielectric(core)-metal(shell) composites embedded in active host matrices[J]. Physica Status Solidi B, 252, 2707-2713(2015).

    [58] Bozzola A. Perotto S, de Angelis F. Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review[J]. Analyst, 142, 883-898(2017).

    [62] Genç A, Patarroyo J, Sancho-Parramon J et al. Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications[J]. Nanophotonics, 6, 1-21(2016).

    [75] Mccall S L. Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992).

    [76] Wang T, Nijhuis C A. Molecular electronic plasmonics[J]. Applied Materials Today, 3, 73-86(2016).

    [102] Bravo-Abad J. Garcia-Vidal F J. Plasmonic lasers: a sense of direction[J]. Nature Nanotechnology, 8, 479-480(2013).

    [107] Zheludev N I, Prosvirnin S L, Papasimakis N et al. Lasing spaser[J]. Nature Photonics, 2, 351-354(2008).

    [108] Roelandt S. Meuret Y, de Boer D K G, et al. Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator[J]. Optical Engineering, 54, 055101(2015).

    [113] Jones H, Chako N. The theory of brillouin zones and electronic states in crystals[M]. Amsterdam: North-Holland Pub Co, 3541-3542(1960).

    [118] Meng X, Liu J, Kildishev A et al. Highly-directional plasmonic lasing in the visible with subwavelength hole arrays[C]. CLEO: QELS_Fundamental Science. Optical Society of America, FTh3K, 3(2014).

    [121] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 54, 050002(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Chen, Guoqiu Yuan, Meng Wang, Min Cao. Advances in Directional Control of Surface Plasmon Amplification by Stimulated Emission of Radiation[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: General

    Received: Sep. 7, 2017

    Accepted: --

    Published Online: Sep. 10, 2018

    The Author Email: Cao Min (mcao@ntu.edu.cn)

    DOI:10.3788/LOP55.030007

    Topics