Acta Optica Sinica, Volume. 45, Issue 8, 0830001(2025)

Phase Correction Algorithm for Spaceborne Infrared Fourier Transform Spectrometer Based on Minimum Spectral Imaginary Part

Han Zhang1, Feng Zhu2、*, Hailiang Shi2, Jingjing Zhang3, Xiang Cao1, Xianhua Wang2, Hanhan Ye2, and Yunfei Han2
Author Affiliations
  • 1School of Artificial Intelligence, Anhui University, Hefei 230601, Anhui, China
  • 2Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 3School of Electrical Engineering and Automation, Anhui University, Hefei 230601, Anhui, China
  • show less
    Figures & Tables(18)
    Fourier transform spectrometer scanning working mode
    Interference schematic of Michelson interferometer
    Schematic diagram of linear calibration principle of two points on a star
    Schematic diagram of simplex algorithm
    Phase correction flowchart
    Adaptation value calculation results. (a) Vary with iteration times; (b) vary with offset
    ICT, ES, and DS spectra and phase distributions in LW band. (a) Spectra; (b) phase distributions
    ICT preprocessing. (a) Phase of 30 scan lines; (b) corresponding to offset interferogram; (c) correlation coefficient matrix
    Phase comparisons before and after DS scene correction. (a) Correction phase; (b) comparison of phase difference with ICT
    Comparisons of calibration data of different methods in ES scene. (a) Phase difference with ICT; (b) spectral imaginary part
    Comparisons of NEdN of the real part spectra of DS and the imaginary part spectra of ES before and after correction. (a) MW; (b) SW
    • Table 1. Instrument parameter characteristics of HIRAS

      View table

      Table 1. Instrument parameter characteristics of HIRAS

      ParameterSpecification
      Scan period10 s
      View angle1.1°
      Scan angle±50.4°
      Radiometric calibration accuracy1 K, expected 0.7 K
      Spectral calibration accuracy1×10-5, expected 7×10-6
      Spectral resolution0.625 cm-1
      Spectral range

      LW: 650‒1135 cm-1

      MW: 1210‒1750 cm-1

      SW: 2155‒2550 cm-1

    • Table 2. Comparisons of methods in LW band

      View table

      Table 2. Comparisons of methods in LW band

      Band

      Missing

      site

      MertzFCEIPAMSI-SM
      Offset

      Q /(mW·m-2·

      sr-1·cm)

      Offset

      Q /(mW·m-2·

      sr-1·cm)

      Offset

      Q /(mW·m-2·

      sr-1·cm)

      Offset

      Q /(mW·m-2·

      sr-1·cm)

      LW2000121.3011.97985.4542.04523.8372.04483.836
      9600115.0931.7411109.4272.031118.4892.029418.472
      14000102.6310.022849.6800.04579.0490.04559.041
      102.631-0.049011.348-0.02302.837-0.02332.831
    • Table 3. Comparisons of methods in MW and SW band

      View table

      Table 3. Comparisons of methods in MW and SW band

      Band

      Missing

      site

      MertzFCEIPAMSI-SM
      Offset

      Q /(mW·m-2·

      sr-1·cm)

      Offset

      Q /(mW·m-2·

      sr-1·cm)

      Offset

      Q /(mW·m-2·

      sr-1·cm)

      Offset

      Q /(mW·m-2·

      sr-1·cm)

      MW73.4930.09261127.0000.006965.6840.007464.881
      SW115.0930.6351182.9370.013511.4810.00209.007
    • Table 4. Comparisons of calibration accuracy in LW band

      View table

      Table 4. Comparisons of calibration accuracy in LW band

      DateMethodFOV 1FOV 2FOV 3FOV 4Average NEdN
      20190301IPA150.142106.576129.439155.570135.432
      MSI-SM150.115106.599129.397155.302135.353
      20190303IPA91.382132.293150.89295.674117.560
      MSI-SM91.270131.691150.66895.579117.302
      20190305IPA239.985121.502145.452159.976166.729
      MSI-SM240.141121.385145.381159.652166.640
      20190307IPA99.293199.765266.605104.894167.639
      MSI-SM98.882198.765265.409103.856166.728
    • Table 5. Comparisons of calibration accuracy in MW band

      View table

      Table 5. Comparisons of calibration accuracy in MW band

      DateMethodFOV 1FOV 2FOV 3FOV 4Average NEdN
      20190301IPA23.92337.93246.50123.79733.038
      MSI-SM23.90836.67646.29523.68332.641
      20190303IPA21.30576.78163.57318.36945.007
      MSI-SM20.61567.23757.79218.80841.113
      20190305IPA39.34358.28064.94634.88249.363
      MSI-SM36.23451.06158.36632.29244.488
      20190307IPA24.31044.50048.58821.19434.648
      MSI-SM23.29739.57944.86920.61432.090
    • Table 6. Comparisons of calibration accuracy in SW band

      View table

      Table 6. Comparisons of calibration accuracy in SW band

      DateMethodFOV 1FOV 2FOV 3FOV 4Average NEdN
      20190301IPA6.7636.7179.4716.2447.299
      MSI-SM5.6495.7014.6324.4745.114
      20190303IPA6.0786.4017.9374.8566.318
      MSI-SM5.8065.7654.5144.3525.109
      20190305IPA6.3326.1177.4854.5176.113
      MSI-SM6.1795.9265.0074.3595.368
      20190307IPA6.5626.95610.6585.3927.392
      MSI-SM5.9145.9174.5334.5215.221
    • Table 7. Comparisons of registration time for different methods

      View table

      Table 7. Comparisons of registration time for different methods

      BandMertzFCEIPAMSI-SM
      LW37.2361.23016.6693.677
      MW31.3211.04420.6522.448
      SW14.2680.56820.8642.494
    Tools

    Get Citation

    Copy Citation Text

    Han Zhang, Feng Zhu, Hailiang Shi, Jingjing Zhang, Xiang Cao, Xianhua Wang, Hanhan Ye, Yunfei Han. Phase Correction Algorithm for Spaceborne Infrared Fourier Transform Spectrometer Based on Minimum Spectral Imaginary Part[J]. Acta Optica Sinica, 2025, 45(8): 0830001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Nov. 5, 2024

    Accepted: Feb. 17, 2025

    Published Online: Apr. 14, 2025

    The Author Email: Feng Zhu (fengzhu@aiofm.ac.cn)

    DOI:10.3788/AOS241704

    CSTR:32393.14.AOS241704

    Topics