Journal of Innovative Optical Health Sciences, Volume. 11, Issue 6, 1850035(2018)

Power spectral density-based nearinfrared sub-band detection for noninvasive blood glucose prediction in both in-vitro and in-vivo studies

Ibrahim Akkaya1,*... Erman Selim2, Mert Altintas2 and Mehmet Engin2 |Show fewer author(s)
Author Affiliations
  • 1Izmir Biomedicine and Genome Center (iBG), Balcova, Izmir 35340, Turkey
  • 2Electrical Electronics Engineering Department, Ege University, Bornova, Izmir 35040, Turkey
  • show less
    References(29)

    [1] [1] World Health Organization (WHO), Global Report on Diabetes, ISBN 9789241565257 (2016). Google Scholar

    [2] [2] C. F. So, K. S. Choi, T. K. S. Wong, J. W. Y. Chung, “Recent advances in noninvasive glucose monitoring,” Med. Dev. Evid. Res. 5, 45–52 (2012). Google Scholar

    [3] [3] N. A. Bazaev, S. V. Selishchev, “Noninvasive methods for blood glucose measurement,” Biomed. Eng. 41 (1), 42–50 (2007).

    [4] [4] Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, D. D. Arnone, “The use of Fourier-transform infreared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48, 2023–2032 (2003).

    [5] [5] L. Brancaleon, M. P. Bamberg, T. Sakamaki, N. Kollias, “Attenuated total reflection Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo,” J. Invest. Dermatol. 116 (3), 380–386 (2001).

    [6] [6] L. Zhu, J. Lin, L. Baiqing, H. Li, “Noninvasive blood glucose measurement by ultrasound modulated optical technique,” Chin. Opt. Lett. 11 (2), 021701 (2013).

    [7] [7] O. Amir, D. Weinstein, S. Zilberman, M. Less, D. Perl-Treves, H. Primack, A. Weinstein, E. Gabis, B. Fikhte, A. Karasik, “Continuous Noninvasive Glucose Monitoring Technology Based on Occlusion Spectroscopy,” J. Diabetes Sci. Tech. 1 (4), 463–469 (2007).

    [8] [8] K. J. Jeon, I. D. Hwang, S. Hahn, G. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt. 11 (1), 014022 (2006).

    [9] [9] N. Ozana, N. Arbel, Y. Beiderman, V. Mico, M. Sanz, J. Garcia, A. Anand, B. Javidi, Y. Epstein, Z. Zalevsky, “Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level,” Biomed. Opt. Exp. 5 (6), 1926–1940 (2014).

    [10] [10] K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography a pilot study in human subjects,” Diabetes Care 25 (12), 2263–2267 (2002).

    [11] [11] V. T. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues ch. 18, CRC Press, Florida (2009). Google Scholar

    [12] [12] N. A. Bazaev, S. V. Selishchev, “Noninvasive methods for blood glucose measurement,” Biomed. Eng., 41 (1), 42–50 (2007).

    [13] [13] Z. Zhao, R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE 4707, Saratov Fall Meeting, Optical Technologies in Biophysics and Medicine III (2002), https://doi.org/10.1117/12.475582. Google Scholar

    [14] [14] K. Yamakoshi, Y. Yamakoshi, “Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantenous differantial near infrared spectrophotometry,” J. Biomed. Opt. 11 (5), 1–11 (2006).

    [15] [15] M. Ogawa, Y. Yamakoshi, S. Makoto, N. Masamichi, T. Yamakoshi, S. Tanaka, P. Rolfe, T. Tamura, K. Yamakoshi, “Support vector machines as multivariate calibration model for prediction of blood glucose concentration using a new non-invasive optical method named pulse glucometry,” 29th Annual Int. Conf. of the IEEE EMBS, Lyon, France, 2007, pp. 4561–4563. Google Scholar

    [16] [16] H. J. Van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, “Light scattering in intralipid 10% in the wavelength range of 400–1000 nm Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantenous differantial near infrared spectrophotometry,” Appl. Opt. 30 (31), 4507–4514 (1991). Crossref, ISI, Google Scholar

    [17] [17] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers in Surgery and Med. 12, 510–519 (1992). Crossref, ISI, Google Scholar

    [18] [18] I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1997–1930 (1989).

    [19] [19] P. Di Ninni, F. Martelli, G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Exp. 18 (26), 26854–26865 (2010).

    [20] [20] P. Di Ninni, F. Martelli, G. Zaccanti, “Intralipid: Towards a diffusive reference standard for optical tissue phantoms,” OPhys. Med. Biology 56 (2), 21–28 (2010).

    [21] [21] J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. S. Christiansen, H. Orskov, M. Essenpreis, G. S. Redeker, D. Bcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22 (3), 190–192 (1997).

    [22] [22] A. K. Amerov, J. Chen, G. W. Small, M. A. Arnold, “Scattering and absorption effects in the determination of glucose in whole blood by near infrared spectroscopy,” Anal. Chem. 77 (14), 4587–4594 (2005).

    [23] [23] M. Elgendi, “On the analysis of fingertip photoplethysmogram signals,” Current Card. Reviews, 8, 14–25 (2012).

    [24] [24] Y. Sun, N. Thakor, “Photoplethysmography revisited: From contact to noncontact, from point to imaging,” IEEE Trans. On Biomed. Eng. 63 (3), 463–477 (2016).

    [25] [25] A. R. Kavsaolu, K. Polat, M. R. Bozkurt, “An innovative peak detection algorithm for photoplethysmography signals: An adaptive segmentation method”, Turkish J. EE and Comp. Sci. 24, 1782–1796 (2016).

    [26] [26] H. Wenqin, L. Xiaoxia, M. Wang, L. Gang, L. Lin, “Spectral quality assessment based on variability analysis: Application to noninvasive hemoglobin measurement by dynamic spectrum,” Anayl. Meth. 7, 5565–5573 (2015).

    [27] [27] L. Gang, Y. Wang, L. Lin, Y. Liu, X. Li, S. C. Y. Lu, “Dynamic spectrum: A brand new non-invasive blood component measure method,” Eng. In Med. And Biol. 27th Annual Conf. China (2005). Google Scholar

    [28] [28] Y. Peng, L. Gang., M. Zhou, H. Wang, L. Lin, “Dynamic spectrum extraction method based on independent component analysis combined dual-tree complex wavelet transform,” Royal Soc. of Chem. 7, 11198–11205 (2017). Google Scholar

    [29] [29] Y. Yamakoshi, K. Matsumura, T. Yamakoshi, J. Lee, P. Rolfe, Y. Kato, K. Shimizu, K. Yamakoshi, “Side-scattered finger photoplethsmograpyh: Experimental investigations toward practical noninvasive measurement of blood glucose,” J. Biomed. Opt. 22 (6), 067001 (2017).

    Tools

    Get Citation

    Copy Citation Text

    Ibrahim Akkaya, Erman Selim, Mert Altintas, Mehmet Engin. Power spectral density-based nearinfrared sub-band detection for noninvasive blood glucose prediction in both in-vitro and in-vivo studies[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850035

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 2, 2018

    Accepted: Aug. 25, 2018

    Published Online: Dec. 27, 2018

    The Author Email: Akkaya Ibrahim (ibrahim.akkaya@ibg.edu.tr)

    DOI:10.1142/s1793545818500359

    Topics