Acta Optica Sinica, Volume. 42, Issue 13, 1304001(2022)

P3HT∶PC61BM as Active Layer for Preparation of Inorganic/Organic Heterojunction Photodetector

Siyuan Weng1, Dayong Jiang1,2、*, and Man Zhao1
Author Affiliations
  • 1School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, Jilin , China
  • show less
    References(34)

    [1] Zhao Z J, Xu C Y, Niu L B et al. Recent progress on broadband organic photodetectors and their applications[J]. Laser & Photonics Reviews, 14, 2000262(2020).

    [2] Falson J, Kawasaki M. A review of the quantum Hall effects in MgZnO/ZnO heterostructures[J]. Reports on Progress in Physics, 81, 056501(2018).

    [3] Duan Y H, Cong M Y, Jiang D Y et al. Spectral response cutoff wavelength of ZnO ultraviolet photodetector modulated by bias voltage[J]. Acta Optica Sinica, 40, 2004001(2020).

    [4] Zhou X, Jiang D Y, Zhao M et al. Heteroepitaxial growth of high Mg-content single-phased W-MgZnO on ZnO matrixes in various nucleation states for solar-blind and visible-blind dual-band UV photodetectors[J]. Materials Research Bulletin, 142, 111438(2021).

    [5] Kutlu-Narin E, Narin P, Yildiz A et al. Effect of magnesium content and growth temperature on structural and optical properties of USCVD-grown MgZnO films[J]. Applied Physics A, 127, 367(2021).

    [6] Han S, Xia H, Lu Y M et al. UV response characteristics of mixed-phase MgZnO thin films with different structure distribution and high Iuv/Idark ratio and fast speed MgZnO UV detector with tunneling breakdown mechanism[J]. Nanotechnology, 32, 235202(2021).

    [7] Gu K Y, Zhou X Y, Zhang Z L et al. Tailoring microstructure and optical properties of MgZnO film on glass by substrate temperature[J]. Materials Letters, 278, 128416(2020).

    [8] Zhao X J, Jiang D Y, Zhao M et al. Avalanche effect and high external quantum efficiency in MgZnO/Au/ZnO sandwich structure photodetector[J]. Advanced Optical Materials, 9, 2002023(2021).

    [9] Fei X M, Jiang D Y, Zhao M et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect[J]. Nanotechnology, 32, 205401(2021).

    [10] Singh R, Khan M A, Sharma P et al. Two-dimensional electron gases in MgZnO/ZnO and ZnO/MgZnO/ZnO heterostructures grown by dual ion beam sputtering[J]. Journal of Physics D, 51, 13LT02(2018).

    [11] Zhao C J, Li G H, Han Y et al. Research progress in junction type organic photodetectors[J]. Laser & Optoelectronics Progress, 57, 130001(2020).

    [12] Zhu J Q, Zhu H, Liu M J et al. Ultrabroadband and multiband infrared/terahertz photodetectors with high sensitivity[J]. Photonics Research, 9, 2167-2175(2021).

    [13] Zidan M N, Ismail T, Fahim I S. Effect of thickness and temperature on flexible organic P3HT∶PCBM solar cell performance[J]. Materials Research Express, 8, 095508(2021).

    [14] Li Q Y, Guo Y L, Liu Y Q. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 31, 6359-6379(2019).

    [15] Zafar Q, Ahmad Z. Dual donor bulk-heterojunction to realize a quick and more sensitive organic visible photodector[J]. Journal of Materials Science: Materials in Electronics, 29, 11144-11150(2018).

    [16] Melancon J M, Živanović S R. Broadband gain in poly(3-hexylthiophene) : phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer[J]. Applied Physics Letters, 105, 163301(2014).

    [17] Lee J, Seon H, Kang J. Comparative studies between photovoltaic and radiation parameters in indirect-type organic X-ray detector with a P3HT∶PCBM active layer[J]. Nanoscience and Nanotechnology Letters, 9, 1159-1164(2017).

    [18] An T, Wang Y Q, Zhang J. Achieving high-detection organic photodetectors covering the visible range by using a ternary active layer[J]. Acta Photonica Sinica, 48, 1004001(2019).

    [19] Narra S, Tsai S E, Awasthi K et al. Photoluminescence of P3HT∶PCBM bulk heterojunction thin films and effect of external electric field[J]. Journal of the Chinese Chemical Society, 69, 140-151(2021).

    [20] Khairulaman F L, Yap C C, Hj Jumali M H. Improved performance of inverted type organic solar cell using copper iodide-doped P3HT∶PCBM as active layer for low light application[J]. Materials Letters, 283, 128827(2021).

    [21] Canto-Reyes D, Soberanis-Ortiz R A, Riech I et al. Photocurrent enhancement estimation of P3HT∶PCBM∶Au films as a function of gold nanoparticles concentration[J]. Gold Bulletin, 53, 141-145(2020).

    [22] Kaçuş H, Biber M, Aydoğan Ş. Role of the Au and Ag nanoparticles on organic solar cells based on P3HT∶PCBM active layer[J]. Applied Physics A, 126, 817(2020).

    [23] Munshi J, Chien T Y, Chen W et al. Elasto-morphology of P3HT∶PCBM bulk heterojunction organic solar cells[J]. Soft Matter, 16, 6743-6751(2020).

    [24] Gao H L, Meng J H, Sun J J et al. Enhanced performance of polymer solar cells based on P3HT∶PCBM via incorporating Au nanoparticles prepared by the micellar method[J]. Journal of Materials Science: Materials in Electronics, 31, 10760-10767(2020).

    [25] Jhamba L, Wamwangi D, Chiguvare Z. Dependence of mobility and charge injection on active layer thickness of bulk heterojunction organic solar cells: PCBM∶P3HT[J]. Optical and Quantum Electronics, 52, 245(2020).

    [26] Huang J, Lee J, Vollbrecht J et al. A high-performance solution-processed organic photodetector for near-infrared sensing[J]. Advanced Materials, 32, e1906027(2020).

    [27] Ha J U, Kim K, Yoon S et al. Synergetic effect of a surfactant on the facile fabrication and high detectivity of an inverted organic bulk heterojunction photodiode[J]. ACS Photonics, 4, 2085-2090(2017).

    [28] Xu X F, Zhou X B, Zhou K et al. Large-area, semitransparent, and flexible all-polymer photodetectors[J]. Advanced Functional Materials, 28, 1805570(2018).

    [29] Li W, Xu Y L, Meng X Y et al. Visible to near-infrared photodetection based on ternary organic heterojunctions[J]. Advanced Functional Materials, 29, 1808948(2019).

    [30] Li C L, Wang H L, Wang F et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging[J]. Light: Science & Applications, 9, 31(2020).

    [31] Huang J F, Lee J, Schrock M et al. Large-gain low-voltage and wideband organic photodetectors via unbalanced charge transport[J]. Materials Horizons, 7, 3234-3241(2020).

    [32] Ren H, Chen J D, Li Y Q et al. Recent progress in organic photodetectors and their applications[J]. Advanced Science, 8, 2002418(2021).

    [33] Lee C C, Su W C, Chang W C et al. The effect of charge transfer state on the open-circuit voltage of small-molecular organic photovoltaic devices: a comparison between the planar and bulk heterojunctions using electroluminescence characterization[J]. Organic Electronics, 16, 1-8(2015).

    [34] Leem D S, Wöbkenberg P H, Huang J S et al. Micron-scale patterning of high conductivity poly(3, 4-ethylendioxythiophene) ∶ poly(styrenesulfonate) for organic field-effect transistors[J]. Organic Electronics, 11, 1307-1312(2010).

    Tools

    Get Citation

    Copy Citation Text

    Siyuan Weng, Dayong Jiang, Man Zhao. P3HT∶PC61BM as Active Layer for Preparation of Inorganic/Organic Heterojunction Photodetector[J]. Acta Optica Sinica, 2022, 42(13): 1304001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Oct. 8, 2021

    Accepted: Jan. 10, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Jiang Dayong (dayongjiangcust@126.com)

    DOI:10.3788/AOS202242.1304001

    Topics