High Power Laser Science and Engineering, Volume. 9, Issue 2, 02000e26(2021)

Modeling of three-dimensional exciplex pumped fluid Cs vapor laser with transverse and longitudinal gas flow

Chenyi Su1, Xingqi Xu1,2, Jinghua Huang1, and Bailiang Pan1、*
Author Affiliations
  • 1Department of Physics, Zhejiang University, Hangzhou310027, China
  • 2Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou310027, China
  • show less
    Figures & Tables(10)
    Sketch of optical systems of XPCsL.
    Diagram of energy states in high-power XPCsL system.
    Comparison of slope efficiency between experiment[19" target="_self" style="display: inline;">19] and simulation results.
    Three-dimensional temperature distribution under different flow directions. The velocity of flow and wall temperature in (a) and (b) are 50 m/s and 473 K.
    (a), (b) The temperature distribution in the x–y plane at y = 0 in Figures 4(a) and 4(b). (c), (d) The distribution of in the x–y plane at y = 0 in Figures 4(a) and 4(b).
    Optical-to-optical efficiency and maximum temperature as a function of flow velocity with different pump intensity at Tw = 473 K.
    Optical-to-optical efficiency and maximum temperature as a function of flow velocity with different wall temperature at pump intensity of 5 × 1010 W/m2.
    • Table 1. Kinetic processes in the XPAL system.

      View table
      View in Article

      Table 1. Kinetic processes in the XPAL system.

      No.ProcessCross-section/rateReferences
      Thermal associative/dissociative process
      1$\mathrm{Cs}\left({6}^2{S}_{1/2}\right)+ \mathrm{Ar}\rightleftharpoons \mathrm{Cs}\left({X}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}$${k}_{01},\ {k}_{10}$
      [12]
      2$\mathrm{Cs}\left({B}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}+ \mathrm{Ar}\rightleftharpoons \mathrm{Cs}\left({6}^2{P}_{3/2}\right)+ \mathrm{Ar}$${k}_{23},\ {k}_{32}$
      Pumping
      3$\mathrm{Cs}\left({X}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}+h{\nu}_p\to \mathrm{Cs}\left({B}^2{\varSigma}_{1/2}^{+}\right) \mathrm{Ar}$${P}_{12}$Equation (9)
      Lasing
      4$\mathrm{Cs}\left({6}^2{P}_{3/2},{6}^2{P}_{1/2}\right)\to \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+h{\nu}_l$${L}_{30}$Equation (8)
      Spontaneous emission
      5$\mathrm{Cs}\left({6}^2{P}_{3/2}\right)\to \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+h{\nu}_l$${A}_{30}$
      [26]
      6$\mathrm{Cs}\left({6}^2{D}_{3/2},{6}^2{D}_{5/2}\right)\to \mathrm{Cs}\left({6}^2{P}_{3/2}\right)+ h\nu$${A}_{43}$
      Photoexcitation
      7$\mathrm{Cs}\left({6}^2{P}_{3/2},{6}^2{P}_{1/2}\right)+h{\nu}_p\left(h{\nu}_l\right)\to \mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)$${Phe}_{34}$[26]
      Energy pooling
      8$2 \mathrm{Cs}\left({6}^2{P}_{3/2},{6}^2{P}_{1/2}\right)\to \mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)$${Ep}_{34}$[27]
      Photoionization
      9$\mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+h{\nu}_{p,l}\to \mathrm{Cs}^{+}+\mathrm{e}$${Phi}_{45}$[27]
      Penning ionization
      10$\mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+ \mathrm{Cs}\left({6}^2{P}_{3/2,1/2}\right)\to \mathrm{Cs}^{+}+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+\mathrm{e}$$Pen$[27]
      Dissociative recombination
      11$\mathrm{Cs}^{+}+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+ \mathrm{Cs}\to \mathrm{Cs}_2^{+}+ \mathrm{Cs}$${R}_1$
      12$\mathrm{Cs}^{+}+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)+ \mathrm{Ar}\to \mathrm{Cs}_2^{+}+ \mathrm{Ar}$[26]
      13$\mathrm{Cs}_2^{+}+\mathrm{e}\to \mathrm{Cs}\left({6}^2{D}_{3/2,5/2},{8}^2{S}_{1/2}\right)+ \mathrm{Cs}\left({6}^2{S}_{1/2}\right)$${R}_2$
    • Table 2. Parameters of experiment and simulation.

      View table
      View in Article

      Table 2. Parameters of experiment and simulation.

      Length of cellTemperaturePressure of ArOC ratio
      4 cm455 K1270 Torr0.13
    • Table 3. Parameters used in the simulation.

      View table
      View in Article

      Table 3. Parameters used in the simulation.

      ParametersDefinitionValue
      $L$Length of the cell2 cm
      $S$Cross-section of the cell2 mm$\times$2 mm
      ${P}_{\mathrm{Ar}}$Pressure of ethane1300 Torr
      ${R}_{\mathrm{oc}}$OC reflectivity0.5
      ${R}_p$Back mirror reflectivity0.99
      ${T}_l$Single-pass cell window transmission0.98
      ${T}_s$Intra-cavity single-pass loss0.9
      ${w}_{0,p}$Waist of the pump beam0.5 mm
      ${w}_{0,l}$Waist of the laser beam0.5 mm
    Tools

    Get Citation

    Copy Citation Text

    Chenyi Su, Xingqi Xu, Jinghua Huang, Bailiang Pan. Modeling of three-dimensional exciplex pumped fluid Cs vapor laser with transverse and longitudinal gas flow[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e26

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 16, 2020

    Accepted: Feb. 1, 2021

    Published Online: Jun. 10, 2021

    The Author Email: Bailiang Pan (xuxingqi@zju.edu.cn)

    DOI:10.1017/hpl.2021.8

    Topics