Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 204(2022)
FexMo1-xS2 as Anode for High-Performance Sodium Ion Batteries
[1] [1] PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energ Environ Sci, 2013, 6(8): 2338-2360.
[2] [2] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114(23): 11636-11682.
[4] [4] WANG Y, CHEN B, SEO D H, et al. MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production[J]. NPG Asia Mater, 2016, 8(5): e268-e268.
[6] [6] WANG J, YU L, ZHOU Z, et al. Template-free synthesis of metallic WS2 hollow microspheres as an anode for the sodium-ion battery[J]. J Colloid Interf Sci, 2019, 557: 722-728.
[8] [8] WANG M, LI G, XU H, et al. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets [J]. ACS Appl Mater Inter, 2013, 5(3): 1003-1008.
[9] [9] JUNG J W, RYU W H, YU S, et al. Dimensional effects of MoS2 nanoplates embedded in carbon nanofibers for bifunctional Li and Na insertion and conversion reactions[J]. ACS Appl Mater Inter, 2016, 8(40): 26758-26768.
[10] [10] WANG J, LIU J, YANG H, et al. MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage[J]. Nano Energy, 2016, 20: 1-10.
[11] [11] ZHU X, LIANG X, FAN X, et al. Fabrication of flower-like MoS2/TiO2 hybrid as an anode material for lithium ion batteries[J]. RSC Adv, 2017, 7(61): 38119-38124.
[12] [12] JEONG Y C, KIM J H, KWON S H, et al. Rational design of exfoliated 1T MoS2@ CNT-based bifunctional separators for lithium sulfur batteries[J]. J Mater Chem A, 2017, 5(45): 23909-23918.
[13] [13] SUN D, HUANG D, WANG H, et al. 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2[J]. Nano Energy, 2019, 61: 361-369.
[14] [14] WU J, LIU J, CUI J, et al. Dual-phase MoS2 as a high-performance sodium-ion battery anode[J]. J Mater Chem A, 2020, 8(4): 2114-2122.
[15] [15] YAO K, XU Z, HUANG J, et al. Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: Achieving 3D diffusion of sodium ion by vacancies to improve kinetics[J]. Small, 2019, 15(12): 1805405.
[16] [16] SUN D, YE D, LIU P, et al. MoS2/Graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(10): 1702383.
[17] [17] PARK J, KIM J S, PARK J W, et al. Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization[J]. Electrochim Acta, 2013, 92: 427-432.
[18] [18] MENG A, HUANG T, LI H, et al. Sulfur vacancies and morphology dependent sodium storage properties of MoS2-x and its sodiation/ desodiation mechanism[J]. J Colloid Interf Sci, 2021, 589: 147-156.
[19] [19] XIAO J, WANG X, YANG X Q, et al. Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium[J]. Adv Funct Mater, 2011, 21(15): 2840-2846.
[20] [20] LI Y, CHANG K, SHANGGUAN E, et al. Powder exfoliated MoS2 nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes[J]. Nanoscale, 2019, 11(4): 1887-1900.
[21] [21] SEN U K, JOHARI P, BASU S, et al. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide[J]. Nanoscale, 2014, 6(17): 10243-10254.
[22] [22] GAO M R, CHAN M K Y, SUN Y. Edge-terminated molybdenum disulfide with a 9.4 interlayer spacing for electrochemical hydrogen production[J]. Nat commun, 2015, 6: 7493.
[23] [23] JIAO T, YANG Q, WU S, et al. Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading[J]. J Mater Chem A, 2019, 7(27): 16330-16338.
[24] [24] WU M, ZHAN J, WU K, et al. Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance[J]. J Mater Chem A, 2017, 5(27): 14061-14069.
[25] [25] DING W, HU L, DAI J, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields[J]. ACS Nano, 2019, 13(2): 1694-1702.
[26] [26] ZHENG W, SHUI M, SHU J I E, et al. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling[J]. Bull Mater Sci, 2013, 36(3): 495-498.
[27] [27] SHAJU K M, RAO G V S, CHOWDARI B V R. EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x= 0 and 1/3)[J]. Electrochim Acta, 2003, 48(18): 2691-2703.
[28] [28] XU X, ZHOU D, QIN X, et al. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance[J]. Nat Commun, 2018, 9(1): 1-12.
[29] [29] WENZEL S, METELMANN H, RAI C, et al. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte[J]. J Power Sources, 2013, 243: 758-765.
[31] [31] WINIARSKI J, TYLUS W, WINIARSKA K, et al. The influence of molybdenum on the corrosion resistance of ternary Zn-Co-Mo alloy coatings deposited from citrate-sulphate bath[J]. Corros Sci, 2015, 91: 330-340.
[32] [32] SONG Q T, XU J. (TiZrNbTa)90Mo10 high-entropy alloy: Electrochemical behavior and passive film characterization under exposure to Ringer’s solution[J]. Corros Sci, 2020, 167: 108513.
[33] [33] MA Q, DU G, GUO B, et al. Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries[J]. Chem Eng J, 2020, 388: 124210.
[34] [34] ZHAO H, WU H, WU J, et al. Preparation of MoS2/WS2 nanosheets by liquid phase exfoliation with assistance of epigallocatechin gallate and study as an additive for high-performance lithium-sulfur batteries[J]. J Colloid Interf Sci, 2019, 552: 554-562.
[35] [35] LIANG D D, WEI X S, CHANG C T, et al. Effects of W addition on the electrochemical behaviour and passive film properties of Fe-Based amorphous alloys in acetic acid solution[J]. Acta Metall Sin, 2018, 31(10): 1098-1108.
[36] [36] LI S, SONG X, KUAI X, et al. A nanoarchitectured Na6Fe5(SO4)8/ CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage[J]. J Mater Chem A, 2019, 7(24): 14656-14669.
[37] [37] SUN D, YE D, LIU P, et al. MoS2/Graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Adv Energy Mater, 2018, 8(10): 1702383.
[38] [38] KONG D, CHENG C, WANG Y, et al. Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes[J]. J Mater Chem A, 2017, 5(19): 9122-9131.
[39] [39] HAN F, ZHANG C, YANG J, et al. Well-dispersed and porous FeP@C nanoplates with stable and ultrafast lithium storage performance through conversion reaction mechanism[J]. J Mater Chem A, 2016, 4(33): 12781-12789.
Get Citation
Copy Citation Text
LI Jing, TAO Huachao, YANG Xuelin. FexMo1-xS2 as Anode for High-Performance Sodium Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 204
Category:
Received: May. 12, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: