Laser & Optoelectronics Progress, Volume. 48, Issue 9, 90602(2011)

Research Progress of Chalcogenide Glass Photonic Crystal Fibers

Dai Shixun*, Yu Xingyan, Zhang Wei, Lin Changgui, Song Bao′an, Wang Xunsi, Liu Yongxing, Xu Tiefeng, and Nie Qiuhua
Author Affiliations
  • [in Chinese]
  • show less
    References(40)

    [1] [1] S. John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486~2489

    [2] [2] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062

    [3] [3] J. C. Knight, T. A. Birks, P. S. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549

    [9] [9] F. Smektala, L. Brilland, T. Chartier et al.. Recent advances in the development of holey optical fibers based on sulfide glasses[C]. SPIE, 2006, 6128: 61280M

    [10] [10] M. El-Amraoui, G. Gadret, J. C. Jules et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt. Express, 2010, 18(25): 26655~26665

    [11] [11] L. Brilland, F. Charpentier, J. Troles et al.. Microstructured chalcogenide fibers for biological and chemical detection: Case study: A CO2 sensor[C]. SPIE, 2009, 7503: 750358

    [12] [12] F. Prudenzano, L. Mescia, L. Allegretti et al.. Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber[J]. Opt. Mater., 2009, 31(9): 1292~1295

    [13] [13] N. J. Traynor, A. Monteville, L. Provino et al.. Fabrication and applications of low loss nonlinear holey fibers[J]. Fiber and Integrated Optics, 2009, 28(1): 51~59

    [14] [14] J. Fatome, C. Fortier, T. N. Nguyen et al.. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers[J]. J. Lightwave Technol., 2009, 27(11): 1707~1715

    [15] [15] T. M. Monro, Y. D. West, D. W. Hewak et al.. Chalcogenide holey fibres[J]. Electron. Lett., 2000, 36(24): 1998~2000

    [16] [16] L. Brilland, F. Smektala, G. Renversez et al.. Fabrication of complex structures of holey fibers in chalcogenide glass[J]. Opt. Express, 2006, 14(3): 1280~1285

    [17] [17] J. S. Sanghera, I. D. Aggarwal, L. B. Shaw et al.. Nonlinear properties of chalcogenide glass fibers[J]. J. Optoelectron. Adv. Mater., 2006, 8(6): 2148~2155

    [18] [18] F. Charpentier, V. Nazabal, J. Troles et al.. Infrared optical sensor for CO2 detection[C]. SPIE, 2009, 7356: 735610

    [19] [19] M. El-Amraoui, J. Fatome, J. C. Jules et al.. Experimental observation of infrared spectral enlargement in As2S3 suspended core microstructured fiber[C]. SPIE, 2010, 7714: 771409

    [20] [20] F. Désévédavy, G. Renversez, J. Troles et al.. Chalcogenide glass hollow core photonic crystal fibers[J]. Opt. Mater., 2010, 32(11): 1532~1539

    [21] [21] C. Fortier, J. Fatome, S. Pitois et al.. Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber[J]. Opt. Express, 2008, 16(13): 9398~9404

    [22] [22] J. Troles, Q. Coulombier, G. Canat et al.. Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm[J]. Opt. Express, 2010, 18(25): 26647~26654

    [23] [23] M. El-Amraoui, J. Fatome, J.C. Jules et al.. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J]. Opt. Express, 2010, 18(5): 4547~4556

    [24] [24] M. De Sario, L. Mescia, F. Prudenzano et al.. Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers[J]. Opt. Laser Technol., 2009, 41(1): 99~106

    [25] [25] F. Désévédavy, G. Renversez, L. Brilland et al.. Small-core chalcogenide microstructured fibers for the infrared[J]. Appl. Opt., 2008, 47(32): 6014~6021

    [26] [26] F. Désévédavy, G. Renversez, J. Troles et al.. Te-As-Se glass microstructured optical fiber for the middle infrared[J]. Appl. Opt., 2009, 48(19): 3860~3865

    [27] [27] Z. G. Lian, Q. Q. Li, D. Furniss et al.. Solid microstructured chalcogenide glass optical fibers for the near-and mid-infrared spectral regions[J]. IEEE Photon. Technol. Lett., 2009, 21(24): 1804~1806

    [28] [28] L. Shaw, J. Sanghera, I. Aggarwal et al.. As-S and As-Se based photonic band gap fiber for IR laser transmission[J]. Opt. Express, 2003, 11(25): 3455~3460

    [29] [29] J. S. Sanghera, L. B. Shaw, I. D. Aggarwal. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(1): 114~119

    [30] [30] J. Troles, L. Brilland, F. Smektala et al.. Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization[J]. Fiber and Integrated Optics, 2009, 28(1): 11~26

    [31] [31] L. Brilland, J. Troles, P. Houizot et al.. Interfaces impact on the transmission of chalcogenides photonic crystal fibres[J]. J. Ceram. Soc. Jpn, 2008, 116(1358): 1024~1027

    [32] [32] Q. Coulombier, L. Brilland, P. Houizot et al.. Casting method for producing low-loss chalcogenide microstructured optical fibers[J]. Opt. Express, 2010, 18(9): 9107~9112

    [33] [33] J. Le Person, F. Smektala, T. Chartier et al.. Light guidance in new chalcogenide holey fibres from GeGaSbS glass[J]. Materials Research Bulletin, 2006, 41(7): 1303~1309

    [34] [34] G. Renversez, F. Bordas, B. T. Kuhlmey. Second mode transition in microstructured optical fibers: Determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size[J]. Opt. Lett., 2005, 30(11): 1264~1266

    [35] [35] J. Hu, C. R. Menyuk. Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses[J]. Opt. Express, 2007, 15(2): 339~349

    [36] [36] V. Ta′eed, N. J. Baker, L. Fu et al.. Ultrafast all-optical chalcogenide glass photonic circuits[J]. Opt. Express, 2007, 15(15): 9205~9221

    [37] [37] B. Ung, M. Skorobogatiy. Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared[J]. Opt. Express, 2010, 18(8): 8647~8659

    [38] [38] F. Smektala, F. Desevedavy, L. Brilland et al.. Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared[C]. SPIE, 2007, 6588: 658803

    [39] [39] X. Yan, C. Chaudhari, G. Qin et al.. Ultraflat supercontinuum generation in an As2S3-based chalcogenide core microstructured fiber[C]. SPIE, 2010, 7598: 75981M

    [40] [40] J. S. Sanghera, F. H. Kung, L. E. Busse et al.. Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers[J]. J. Am. Cer. Soc., 1995, 78(8): 2198~2202

    CLP Journals

    [1] Wang Yingying, Dai Shixun, Luo Baohua, Zhang Peiqing, Wang Xunsi, Liu Zijun. Progress in Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90005

    [2] Wang Cui, Dai Shixun, Yang Peilong, Zhang Peiqing, Wang Xunsi, Liu Zijun, Chen Feifei, Shen Xiang, Nie Qiuhua. Infrared Supercontinuum Generation in Chalcogencide-Telluritecompound Microstructured Optical Fiber[J]. Acta Optica Sinica, 2015, 35(8): 816003

    [3] Lü Sheqin, Li Chaoran, Wu Yuehao, Zhang Peiqing, Wang Xunsi, Shen Xiang, Zhang Wei, Dai Shixun. Research Progress of Micro/nano-Optical Device Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2014, 51(5): 50001

    [4] Cao Fengzhen, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Tiefeng, Nie Qiuhua. Research Progress of High-Nonlinearity Photonic Crystal Fiber Based on Chalcogenide Glass[J]. Laser & Optoelectronics Progress, 2013, 50(6): 60003

    [5] Liu Yongxing, Zhang Peiqing, Xu Yinsheng, Wang Xunsi, Dai Shixun, Nie Qiuhua, Xu Tiefeng. Preparation of Ge30Sb8Se62 Chalcogenide Glass and Designing for a Low-Loss Hollow-Core Photonic Crystal Fiber at 10.6 μm[J]. Acta Optica Sinica, 2012, 32(10): 1016004

    [6] Yi Changshen, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Yinsheng, Xu Tiefeng, Nie Qiuhua. Research Progress of Large-Mode Area Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100001

    [7] Chen Yali, Yang Weibing. All-Solid Chalcogenide Microstructured Optical Fiber with Two Zero-Dispersion Mid-Infrared Wavelengths[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60605

    [8] Zhu Qingde, Wang Xunsi, Zhang Peiqing, Peng Tao, Chen Wei, Nie Qiuhua, Sun Lihong, Cheng Ci, Liu shuo, Pan Zhanghao, Liao Fangxing, Zhang Peiquan, Liu Zijun, Dai Shixun, Guangming Tao. Fabrication and Optical Properties of Chalcogenide As2S3 Suspended-Core Fiber[J]. Acta Optica Sinica, 2015, 35(12): 1206004

    [9] Liu Li, Xu Tiefeng, Dai Zhenxiang, Liu Taijun, Dai Shixun, Wang Xunsi, Zhang Xiupu. Research Progress on Optical Millimeter-Wave Generation Based on Four-Wave Mixing[J]. Laser & Optoelectronics Progress, 2016, 53(5): 50001

    [10] Yu Xingyan, Dai Shixun, Zhou Yaxun, Wang Xunsi, Zhang Peiqing, Liu Yongxing, Xu Tiefeng, Nie Qiuhua. Theoretical Studies on Mid-Infrared Gain Characteristics of Erbium-Doped Chalcogenide Glass Fibers[J]. Chinese Journal of Lasers, 2012, 39(1): 105003

    Tools

    Get Citation

    Copy Citation Text

    Dai Shixun, Yu Xingyan, Zhang Wei, Lin Changgui, Song Bao′an, Wang Xunsi, Liu Yongxing, Xu Tiefeng, Nie Qiuhua. Research Progress of Chalcogenide Glass Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 90602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 28, 2011

    Accepted: --

    Published Online: Jul. 29, 2011

    The Author Email: Shixun Dai (daishixun@nbu.edu.cn)

    DOI:10.3788/lop48.090602

    Topics