Journal of Synthetic Crystals, Volume. 53, Issue 11, 1829(2024)
Research Progress on High-Melting-Point Rare Earth Oxides Laser Crystals
[5] [5] ZHOU S F, LI C Y, YANG G, et al. Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid[J]. Advanced Functional Materials, 2013, 23(43): 5436-5443.
[6] [6] GUO R Q, WANG F Y, WANG S X, et al. Exploration of the crystal growth and crystal-field effect of Yb3+ in orthorhombic GdScO3 and LaLuO3 crystals[J]. Crystal Growth & Design, 2023, 23(5): 3761-3768.
[7] [7] ALIMOV O, DOBRETSOVA E, GURYEV D, et al. Growth and characterization of neodymium-doped yttrium scandate crystal fiber with a bixbyite-type crystal structure[J]. Crystal Growth & Design, 2020, 20(7): 4593-4599.
[8] [8] KRNKEL C, UVAROVA A, GUGUSCHEV C, et al. Rare-earth doped mixed sesquioxides for ultrafast lasers[J]. Optical Materials Express, 2022, 12(3): 1074.
[9] [9] PETROV V, PETERMANN K, GRIEBNER U, et al. Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts[C]//Laser Source and System Technology for Defense and Security II. Orlando (Kissimmee), FL. SPIE, 2006, 6216: 130-143.
[10] [10] YU J Q, CUI L, HE H Q, et al. Raman spectra of RE2O3 (RE=Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis[J]. Journal of Rare Earths, 2014, 32(1): 1-4.
[11] [11] LI J D, HOU W T, XUE Y Y, et al. A new near-infrared broadband laser crystal: Cr3+ doped YScO3[J]. Journal of Luminescence, 2023, 257: 119710.
[12] [12] PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals[J]. CrystEngComm, 2018, 20(40): 6291-6299.
[13] [13] CHAIX-PLUCHERY O, KREISEL J. Raman scattering of perovskite DyScO3 and GdScO3 single crystals[J]. Journal of Physics: Condensed Matter, 2009, 21(17): 175901.
[14] [14] BROWN E E, FLEISCHMAN Z D, MCKAY J, et al. Spectroscopic characterization of low-phonon Er-doped BaF2 single crystal for mid-IR lasers[J]. Optical Materials Express, 2021, 11(2): 575.
[15] [15] BRUNN P VON, HEUER A, KRNKEL C. Rare-earth-doped sesquioxides for lasers in the mid-infrared spectral range[C]. Shaker Verlag: 2015 European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference (Optica Publishing Group), 2015: CE_P_22.
[16] [16] UECKER R, WILKE H, SCHLOM D G, et al. Spiral formation during Czochralski growth of rare-earth scandates[J]. Journal of Crystal Growth, 2006, 295(1): 84-91.
[19] [19] HOU W T, XU Z A, ZHAO H Y, et al. Enhanced 2.7 m continuous-wave emission of Er, Pr∶Lu2O3 crystal[J]. Journal of Luminescence, 2020, 224: 117094.
[20] [20] HOU W T, XU Z A, ZHAO H Y, et al. Spectroscopic analysis of Er∶Y2O3 crystal at 2.7 m mid-IR laser[J]. Optical Materials, 2020, 107: 110017.
[21] [21] ZHANG N, YIN Y Q, ZHANG J, et al. Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method[J]. CrystEngComm, 2021, 23(7): 1657-1662.
[22] [22] ZHANG N, ZHOU H L, YIN Y R, et al. Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application[J]. Journal of Alloys and Compounds, 2021, 889: 161348.
[24] [24] WANG G J, YIN Y R, ZHANG B T, et al. Record size crystal growth and laser performance of Yb-doped lutetium oxide (Yb∶Lu2O3) single crystal[J]. CrystEngComm, 2024, 26(4): 452-458.
[25] [25] PETERS V, BOLZ A, PETERMANN K, et al. Growth of high-melting sesquioxides by the heat exchanger method[J]. Journal of Crystal Growth, 2002, 237: 879-883.
[26] [26] LIU J, RICO M, GRIEBNER U, et al. Efficient room temperature continuous-wave operation of an Yb3+∶Sc2O3 crystal laser at 1041.6 and 1094.6 nm[J]. Physica Status Solidi (a), 2005, 202(3): R19-R21.
[27] [27] PETERS R, KRNKEL C, PETERMANN K, et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb∶Lu2O3[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1934-1938.
[28] [28] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 m[J]. Applied Physics B, 2011, 102(1): 19-24.
[29] [29] LI T, BEIL K, KRNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 285 m[J]. Optics Letters, 2012, 37(13): 2568.
[30] [30] LIANG Y, LI T, ZHANG B, et al. 14.1 W continuous-wave dual-end diode-pumped Er∶Lu2O3 laser at 2.85 m[J]. Chines Optics Letters, 2024, 22(1): 011403.
[31] [31] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573.
[32] [32] ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 m[J]. Applied Optics, 2023, 62(6): 1462.
[35] [35] PETERS V, PETERMANN K, BOLZ A, et al. Ytterbium-doped sesquioxides as host materials for high-power laser applications[C]. Laser 2001-World of Photonics 15th International Conference on Lasers and Electrooptics in Europe, Technical Digest Series (Optica Publishing Group, 2001): HP40.
[36] [36] KONG J, TANG D Y, SHEN D Y, et al. Diode-pumped Yb∶Y2O3 ceramic laser[C]//High-Power Lasers and Applications II. Shanghai, China. SPIE, 2002, 4914: 74-81.
[37] [37] KONG J, LU J, TAKAICHI K, et al. Diode-pumped Yb∶Y2O3 ceramic laser[J]. Appl Phys Lett, 2003, 82(16): 2556-2558.
[38] [38] LU J, BISSON J F, TAKAICHI K, et al. Yb3+∶Sc2O3 ceramic laser[J]. Appl Phys Lett, 2003, 83(6): 1101-1103.
[39] [39] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3∶Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3.
[40] [40] KONG J, TANG D Y, ZHAO B, et al. 9.2 W diode-end-pumped Yb∶Y2O3 ceramic laser[J]. Appl Phys Lett, 2005, 86(16): 161116.
[41] [41] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578.
[42] [42] PETERS R, KRNKEL C, FREDRICH-THORNTON S T, et al. Thermal analysis and efficient high power continuous-wave andmode-locked thin disk laser operation of Yb-doped sesquioxides[J]. Applied Physics B, 2011, 102(3): 509-514.
[43] [43] WEICHELT B, WENTSCH K S, VOSS A, et al. A 670 W Yb∶Lu2O3 thin-disk laser[J]. Laser Physics Letters, 2012, 9(2): 110-115.
[44] [44] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Continuous wave and mode-locked Yb3+∶Y2O3 ceramic thin disk laser[J]. Optics Express, 2012, 20(10): 10847-10852.
[45] [45] KITAJIMA S, NAKAO H, SHIRAKAWA A, et al. CW performance and temperature observation of Yb∶Lu2O3 ceramic thin-disk laser[C]//Laser Congress 2017 (ASSL, LAC). Nagoya, Aichi. Washington, D.C.: OSA, 2017.
[46] [46] DAVID S P, JAMBUNATHAN V, YUE F X, et al. Efficient diode pumped Yb∶Y2O3 cryogenic laser[J]. Applied Physics B, 2019, 125(7): 137.
[47] [47] LIU Z Y, TOCI G, PIRRI A, et al. Fabrication and laser operation of Yb∶Lu2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the American Ceramic Society, 2019, 102(12): 7491-7499.
[48] [48] ESSER S, RHRER C, XU X D, et al. Ceramic Yb∶Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066.
[49] [49] ESSER S, XU X D, WANG J, et al. Single-crystal and ceramic Yb∶Lu2O3 gain media for thin-disk oscillators[J]. Applied Physics B, 2023, 129(10): 160.
[50] [50] HLSHOFF L, UVAROVA A, GUGUSCHEV C, et al. Czochralski growth and laser operation of Er- and Yb-doped mixed sesquioxide crystals[C]//Laser Congress 2021 (ASSL, LAC). Washington, DC: Optica Publishing Group, 2021: ATh1A.2.
[51] [51] KALUSNIAK S, UVAROVA A, ARLT I, et al. Growth, characterization, and efficient laser operation of czochralski- and micro-pulling-down-grown Yb3+∶YScO3 mixed sesquioxides[J]. Optical Materials Express, 2024, 14(2): 304.
[52] [52] PARADIS C, MODSCHING N, WITTWER V J, et al. Generation of 35-fs pulses from a kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918-14925.
[53] [53] LIU L X, NIU S Y, LIANG Z Y, et al. Spectroscopy and kerr-lens mode-locked operation of Yb∶GdScO3 crystal[J]. Optics Express, 2024, 32(9): 16065-16074.
[54] [54] GUO J, LI S M, ZHAO C C, et al. SESAM mode-locked Yb∶GdScO3 laser[J]. Optics Express, 2024, 32(5): 7865-7872.
[55] [55] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped sub-100 fs kerr-lens mode-locked Yb3+∶Sc2O3 ceramic laser[J]. Optics Letters, 2007, 32(23): 3382-3384.
[56] [56] TOKURAKAWA M, SHIRAKAWA A, UEDA K I, et al. Diode-pumped ultrashort-pulse generation based on Yb3+∶Sc2O3 and Yb3+∶Y2O3 ceramic multi-gain-media oscillator[J]. Optics Express, 2009, 17(5): 3353.
[57] [57] TOKURAKAWA M, SHIRAKAWA A, UEDA K, et al. Ultrashort pulse generation from diode pumped mode-locked Yb3+: sesquioxide single crystal lasers[J]. Optics Express, 2011, 19(4): 2904-2909.
[58] [58] SU X, WANG Y, YIN Y, et al. Sub-100-fs Kerr-lens mode-locked Yb∶Lu2O3 laser with more than 60% optical efficiency[J]. Optics Letters, 2024, 49: 145-148.
[59] [59] ZHAO Y G, WANG L, CHEN W D, et al. SESAM mode-locked Tm∶LuYO3 ceramic laser generating 54-fs pulses at 2048 nm[J]. Applied Optics, 2020, 59(33): 10493-10497.
[60] [60] ZHAO Y G, WANG L, WANG Y C, et al. SWCNT-SA mode-locked Tm∶LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 m[J]. Optics Letters, 2020, 45(2): 459.
[61] [61] ZHAO Y G, WANG L, CHEN W D, et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser[J]. Optics Letters, 2021, 46(14): 3428-3431.
[62] [62] ZHANG N, LIU S D, WANG Z X, et al. SESAM mode-locked Tm∶Y2O3 ceramic laser[J]. Optics Express, 2022, 30(16): 29531-29538.
[63] [63] ZHANG N, SONG Q S, ZHOU J J, et al. 44-fs pulse generation at 2.05 m from a SESAM mode-locked Tm∶GdScO3 laser[J]. Optics Letters, 2023, 48(2): 510-513.
[64] [64] SUZUKI A, KALUSNIAK S, GANSCHOW S, et al. Kerr-lens mode-locked 49-fs Tm3+∶YScO3 single-crystal laser at 2.1 m[J]. Optics Letters, 2023, 48(16): 4221.
[65] [65] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 m[J]. Optics Express, 2013, 21(3): 3926-3931.
[66] [66] WANG F, TANG J W, LI E H, et al. Ho3+∶Y2O3 ceramic laser generated over 113 W of output power at 2117 nm[J]. Optics Letters, 2019, 44(24): 5933-5936.
[67] [67] LIU J, ZHANG N, SONG Q, et al. Tunable and mode-locked Tm, Ho∶GdScO3 laser[J]. Optics Letters, 2024, 49, 2145-2148.
[68] [68] ZHANG N, DING H, WANG Y, et al. Mode-locking of anisotropic Tm, Ho∶GdScO3 laser delivering 57-fs pulses at 2078 nm[J]. Opt Express, 2024, 32: 35194-35201.
[72] [72] SOROKINA I T, VODOPYANOV K L. Solid-state mid-infrared laser sources[M]. Berlin: Springer Science & Business Media, 2003.
[73] [73] GUAN X F, ZHAN L J, ZHU Z W, et al. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er∶Y2O3 ceramic lasers at 27 m[J]. Applied Optics, 2018, 57(3): 371.
[74] [74] GUAN X F, WANG J W, ZHANG Y Z, et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830.
[76] [76] ZONG M Y, HOU W T, ZHAO Y H, et al. 2.7 m laser properties research of Er∶Y2O3 crystal[J]. Infrared Physics & Technology, 2022, 127: 104460.
[77] [77] HOU W, XUE X, QIN Z, et al. Efficient continuous wave and passively Q switched Er∶GdScO3 laser using Fe∶ZnSe at 2.8 m[J]. Optics Letters, 2023, 48: 2118-2121.
Get Citation
Copy Citation Text
REN Yongchun, LI Jianda, CAO Xiao, HUANG Yi, ZHANG Fan, ZHANG Ning, XUE Yanyan, WANG Qingguo, TANG Huili, XU Xiaodong, DONG Yongjun, XU Jun. Research Progress on High-Melting-Point Rare Earth Oxides Laser Crystals[J]. Journal of Synthetic Crystals, 2024, 53(11): 1829
Category:
Received: Sep. 16, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: Jun XU (15503@tongji.edu.cn)
CSTR:32186.14.