Acta Photonica Sinica, Volume. 52, Issue 4, 0410002(2023)
Improved Faster-RCNN Based on Multi Feature Scale Fusion for Automatic Detection of Microaneurysms in Retina
[1] P S SILVA, H EIRAMI, R BARHAM et al. Hemorrhage and/or microaneurysm severity and count in ultrawide field images and early treatment diabetic retinopathy study photography. Ophthalmology, 124, 970-975(2017).
[2] A D FLEMING, S PHILIP, K A GOATMAN et al. Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Transactions on Medical Imaging, 25, 1223-1245(2006).
[3] T Y WONG, J SUN, R KAWASAKI et al. Guidelines on diabetic eye care: the Int′l council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource setting. Ophthalmology, 125, 1608-1622(2018).
[4] Yi SHAO, Zhao ZHOU, Qianmin GE. Consensus interpretation on the diagnosis and treatment of diabetic retinopathy and diabetic macular edema by the The Royal College of Ophthalmologists. Recent Advances in Ophthalmology, 601-607(2021).
[5] Yixuan CHEN, Li WEN, Cunwen PEI et al. Changes of microvascular diameter in non-proliferative diabetic retinopathy. International Eye Science, 21, 1632-1636(2021).
[6] Xiaobo LAI, Huashan LIU, Chunjie FANG. Retinal microaneurysm extraction by fusing relationship among features. Optics and Precision Engineering, 21, 2187-2194(2013).
[7] Shaohua ZHENG, Lin PAN, Jian CHEN et al. Grading method for non-proliferative diabetic retinopathy images based on microaneurysms and hemorrhages automatic detection. Chinese Journal of Scientific Instrument, 35, 59-67(2014).
[8] Weiwei GAO, Jianxin SHEN, Yuliang WANG et al. Efficient and automated detection of microaneurysms from non-dilated fundus images. Chinese Journal of Biomedical Engineering, 31, 839-845(2013).
[9] Xinpeng ZHANG, Jigang WU, Min MENG et al. Feature-transfer network and local background suppression formicroaneurysm detection. Machine Vision and Applications, 32, 1-15(2020).
[10] J I ORLANDO, E PROKOFYEVA, M D FRESNO et al. An ensemble deep learning based approach for red lesion detection in fundus images. Computer Methods and Programs in Biomedicine, 153, 115-127(2017).
[11] B WU, W ZHU, F SHI et al. Automatic detection of microaneurysms in retinal fundus images. Computerized Medical Imaging and Graphics, 55, 106-112(2017).
[12] D YADAV, K KARNA, A GIDDALUR et al. Microaneurysm detection using color locus detection method. Measurement, 176, 109084(2021).
[13] L DAI, R FANG, H LI et al. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Transactions on Medical Imaging, 37, 1149-1161(2018).
[14] R A ROHAN. Film: finding thelocation ofmicroaneurysms ontheretina. Biomedical Engineering Letters, 9, 497-506(2019).
[15] Xuegong ZHAO, Jiakun DENG, Haoran WEI et al. CNN-based microaneurysm detectionin fundus images. Journal of University of Electronic Science and Technology of China, 50, 915-920(2021).
[16] Y XU, Z ZHOU, X LI et al. FFU-net: feature fusionu-net for lesion segmentation of diabetic retinopathy. Biomed Research International, 2021, 1-12(2021).
[17] Song GUO, Tao LI, Ning LI et al. Red lesion segmentation of fundus image with multi-task learning. Journal of Software, 32, 3646-3658(2021).
[18] Jiawei FAN, Ruru ZHANG, Meng LU et al. Applications of deep learning techniques for diabetic retinal diagnosis. Acta Automatica Sinica, 47, 985-1004(2021).
[19] R GIRSHICK. Fast R-CNN, 1440-1448(2015).
[20] S REN, K HE, R GIRSHICK et al. Faster R-CNN: towards realtime object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[21] Z CAI, N VASCONCELOS. Cascade R-CNN:delving into high quality object detection, 6154-6162(2018).
[22] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2980-2988(2017).
[23] Z TIAN, C SHEN, H CHEN et al. Fcos: fully convolutional onestage object detection, 9627-9636(2019).
[24] Huilan LUO, Hongkun CHEN. Survey of object detection based on deep learning. Acta Electronica Sinica, 48, 1230-1239(2020).
[25] Keqi CHEN, Zhiliang ZHU, Xiaoming DENG et al. Deep learning for multi-scale object detection: a survey. Journal of Software, 32, 1201-1227(2021).
[26] K HE, G GKIOXARI, P DOLLAR et al. Mask R-CNN. IEEE Transactions on Pattern Analysis & Machine Intelligence, 42, 386-397(2020).
[27] Cuiwen ZHANG, Changlun ZHANG, Qiang HE et al. Research on loss function of box regression in object detection. Computer Engineering and Applications, 57, 97-103(2021).
[28] Hong HUANG, Tao WANG, Yuan LI et al. Cancer pathological segmentation network based on depth feature fusion. Acta Photonica Sinica, 51, 0310001(2022).
[29] Bin HE, Yibo ZHANG, Jianlin GONG et al. Fast recognition of tomato fruit in greenhouse at night based on improved YOLOv5. Transactions of the Chinese Society of Agricultural Machinery, 53, 201-208(2022).
Get Citation
Copy Citation Text
Weiwei GAO, Yile YANG, Yu FANG, Bo FAN, Nan SONG. Improved Faster-RCNN Based on Multi Feature Scale Fusion for Automatic Detection of Microaneurysms in Retina[J]. Acta Photonica Sinica, 2023, 52(4): 0410002
Category:
Received: Aug. 11, 2022
Accepted: Nov. 21, 2022
Published Online: Jun. 21, 2023
The Author Email: GAO Weiwei (gww03020234@sina.com)