Optics and Precision Engineering, Volume. 30, Issue 10, 1240(2022)
High frequency signal reconstruction based on compressive sensing and equivalent-time sampling
[1] IMAI T, KITAO K, TRAN N et al. Development of high frequency band over 6 GHz for 5G mobile communication systems[C], 1-4(2015).
[2] [2] 2李志勇. 基于5G技术的光通信视频同步传输研究[J]. 激光杂志, 2021, 42(8): 98-103. doi: 10.14016/j.cnki.jgzz.2021.08.098LIZ Y. Research on synchronous transmission of optical communication video based on 5G technology[J]. Laser Journal, 2021, 42(8): 98-103.(in Chinese). doi: 10.14016/j.cnki.jgzz.2021.08.098
[3] [3] 3刘翠微, 余建军. 结构简单的D波段矢量毫米波信号产生的方法[J]. 光学学报, 2021, 41(4): 0406001. doi: 10.3788/aos202141.0406001LIUC W, YUJ J. A new scheme of D-band mm-wave vector signal generation with simple structure[J]. Acta Optica Sinica, 2021, 41(4): 0406001.(in Chinese). doi: 10.3788/aos202141.0406001
[4] YAN J Y, DENG X, LAN A L et al. The digital beam forming technique in AgileDARN high-frequency radar[J]. Polar Science, 28, 100595(2021).
[5] [5] 5潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36-52.PANS L, ZHANGY M. Microwave photonic radar and key technologies[J]. Science & Technology Review, 2017, 35(20): 36-52.(in Chinese)
[6] [6] 6何刚, 瞿鹏飞, 孙力军. 微波光子技术应用现状及趋势[J]. 半导体光电, 2017, 38(5): 627-632. doi: 10.16818/j.issn1001-5868.2017.05.001HEG, QUP F, SUNL J. Application status and trend of microwave photonic technology[J]. Semiconductor Optoelectronics, 2017, 38(5): 627-632.(in Chinese). doi: 10.16818/j.issn1001-5868.2017.05.001
[7] SHUBIN I, CUNNINGHAM J E. Chip package to support high-frequency processors[P].
[8] [8] 8刘奇, 李璞, 开超, 等. 基于时延光子储备池计算的混沌激光短期预测[J]. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355LIUQ, LIP, KAI C, et al. Short-time prediction of chaotic laser using time-delayed photonic reservoir computing[J]. Acta Physica Sinica, 2021, 70(15): 154209.(in Chinese). doi: 10.7498/aps.70.20210355
[9] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).
[10] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[11] DUARTE M F, DAVENPORT M A, TAKHAR D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).
[12] JING N, YU C, LI K W et al. Compressive sensing absorption spectroscopy based on photoelastic modulation and single-pixel detection[J]. IEEE Sensors Journal, 21, 9885-9889(2021).
[13] [13] 13陈明惠, 王帆, 张晨曦, 等. 基于压缩感知的频域OCT图像稀疏重构[J]. 光学 精密工程, 2020, 28(1): 189-199. doi: 10.3788/ope.20202801.0189CHENM H, WANGF, ZHANGC X, et al. Sparse reconstruction of frequency domain OCT image based on compressed sensing[J]. Opt. Precision Eng., 2020, 28(1): 189-199.(in Chinese). doi: 10.3788/ope.20202801.0189
[14] WILLIAMS D, HALE P, REMLEY K A. The sampling oscilloscope as a microwave instrument[J]. IEEE Microwave Magazine, 8, 59-68(2007).
[15] SASAKI Y, ZHAO Y J, KUWANA A et al. Highly efficient waveform acquisition condition in equivalent-time sampling system[C], 197-202(2018).
[16] JING N, MIDIDODDI C K, WANG C. Compressive sensing detection of RF signals by all-optically generated binary random patterns[C], 1-4(2019).
Get Citation
Copy Citation Text
Ning JING, Dingyi YAO, Zhibin WANG, Minjuan ZHANG, Rui ZHANG. High frequency signal reconstruction based on compressive sensing and equivalent-time sampling[J]. Optics and Precision Engineering, 2022, 30(10): 1240
Category: Information Sciences
Received: Dec. 29, 2021
Accepted: --
Published Online: Jun. 1, 2022
The Author Email: Minjuan ZHANG (zmj7745@163.com)