Optics and Precision Engineering, Volume. 32, Issue 18, 2733(2024)
Temperature measurement in methane-ammonia co-fired laminar premixed flame using mid-infrared laser absorption tomography
[1] [1] 张莉,薛勃飞,刘玉新,等. 氨氢融合新能源交叉科学前沿战略研究 [J]. 科学通报, 2023, 68 (23): 3107-3112. doi: 10.1360/tb-2023-0531ZHANGL, XUEB F, LIUY X, et al. A stra-tegic study of ammonia-hydrogen new energy i-nterdisciplinary science frontiers [J]. Chinese Science Bulletin, 2023, 68(23): 3107-3112. (in Ch-inese). doi: 10.1360/tb-2023-0531
[2] [2] 金之钧, 张川, 王晓峰, 等. 关于中国碳中和与能源转型实现路径的思考[J]. 石油与天然气地质, 2024, 45(3): 593-599.JINZ J, ZHANGC, WANGX F, et al. A pathway to China's energy transition in a carbon neutrality vision[J]. Oil & Gas Geology, 2024, 45(3): 593-599.(in Chinese)
[3] A VALERA-MEDINA, M O VIGUERAS-ZUNIGA, H SHI et al. Ammonia combustion in furnaces: a review. International Journal of Hydrogen Energy, 49, 1597-1618(2024).
[4] X R ZHU, J G DU, Z YU et al. NO
[5] [5] 康涵, 李明海, 杨灿, 等. 基于裸装热电偶的开放油池火焰测温误差修正方法[J]. 工程热物理学报, 2023, 44(12): 3474-3479.KANGH, LIM H, YANGC, et al. Error correction method of pool fire temperature measurement in open space based on bare-bead thermocouple[J]. Journal of Engineering Thermophysics, 2023, 44(12): 3474-3479.(in Chinese)
[6] [6] 张天宇, 吴嘉雯, 方弘毅, 等. 航空涡轮叶片表面红外温度测量[J]. 节能技术, 2023, 41(3): 195-202, 223.ZHANGT Y, WUJ W, FANGH Y, et al. Infrared temperature measurement of aircraft turbine blade surface[J]. Energy Conservation Technology, 2023, 41(3): 195-202, 223.(in Chinese)
[7] [7] 刘宁博, 赵逸佳, 陆盛曜, 等. 热化学参数非均匀分布对双色激光吸收光谱测量碳烟火焰温度的影响[J]. 光学 精密工程, 2023, 31(19): 2799-2808. doi: 10.37188/ope.20233119.2799LIUN B, ZHAOY J, LUS Y, et al. Influence of non-uniform distributions of thermochemical parameters on measurement of sooting flame temperature by two-color laser absorption spectroscopy[J]. Opt. Precision Eng., 2023, 31(19): 2799-2808.(in Chinese). doi: 10.37188/ope.20233119.2799
[8] [8] 刘英, 胡迈, 王兴平, 等. Ppb级探测灵敏度的CO2腔衰荡光谱仪[J]. 光学 精密工程, 2023, 31(20): 2921-2929. doi: 10.37188/ope.20233120.2921LIUY, HUM, WANGX P, et al. Cavity ring-down spectrometer of CO2 with ppb detection sensitivity[J]. Opt. Precision Eng., 2023, 31(20): 2921-2929.(in Chinese). doi: 10.37188/ope.20233120.2921
[9] [9] 杨舒涵,乔顺达,林殿阳,等. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究 [J].中国光学(中英文), 2023, 16(1): 151-157. doi: 10.37188/co.2022-0029YANGS H, QIAOS D, LIND Y, et al. Research on highly sensitive detection of oxyg-en concentrations based on tunable diode laser absorption spectroscopy [J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/co.2022-0029
[10] [10] 杨天悦,宫廷,郭古青,等. 氨气高精度激光光谱检测装置的设计及实现 [J]. 中国光学(中英文), 2023, 16(5): 1129-1136. doi: 10.37188/co.2023-0023YANGT Y, GONGT, GUOG Q, et al. Desi-gn and achievement of a device for high-precis-ion ammonia gas detection based on laser spec-troscopy [J]. Chinese Optics, 2023, 16(5): 1129-1136. (in Chinese). doi: 10.37188/co.2023-0023
[11] [11] 余西龙, 曾徽, 林鑫, 等. 可调谐二极管激光吸收光谱诊断技术:原理和应用[J]. 气体物理, 2016, 1(5): 52-63.YUX L, ZENGH, LINX, et al. Tunable diode laser absorption spectroscopy: principle and application[J]. Physics of Gases, 2016, 1(5): 52-63.(in Chinese)
[12] [12] 曹章, 高欣, 陆方皞, 等. 激光吸收光谱层析成像及复杂燃烧场动态监测[J]. 中国激光, 2022, 49(19): 1904002. doi: 10.3788/CJL202249.1904002CAOZ, GAOX, LUF H, et al. Laser absorption spectral tomography for dynamical combustion monitoring[J]. Chinese Journal of Lasers, 2022, 49(19): 1904002.(in Chinese). doi: 10.3788/CJL202249.1904002
[13] [13] 李金义,赵航,杨晓涛,等. 激光吸收光谱2D和3D成像测量技术及其应用研究进展 [J]. 激光与光电子学进展, 2022, 59(19): 71-84. doi: 10.3788/LOP202259.1900005LIJ Y, ZHAOH, YANGX T, et al. Research and application progress on laser absorption sp-ectroscopy technology for 2D and 3D imaging measurement [J]. Laser & Optoelectronics Prog-ress, 2022, 59(19): 71-84. (in Chinese). doi: 10.3788/LOP202259.1900005
[14] [14] 阚瑞峰, 夏晖晖, 许振宇, 等. 激光吸收光谱流场诊断技术应用研究与进展[J]. 中国激光, 2018, 45(9): 0911005. doi: 10.3788/cjl201845.0911005KANR F, XIAH H, XUZ Y, et al. Research and progress of flow field diagnosis based on laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911005.(in Chinese). doi: 10.3788/cjl201845.0911005
[15] [15] 王倩,蔡伟伟,陶波. 基于层析成像的激光强度分布测量方法 [J]. 中国光学(中英文), 2023, 16(4): 743-752. doi: 10.37188/co.2022-0016WANGQ, CAIW W, TAOB. Laser intensity distribution measurement method based on tom-ographic imaging [J]. Chinese Optics, 023, 16(4): 743-752. (in Chinese). doi: 10.37188/co.2022-0016
[16] W W CAI, C F KAMINSKI. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows. Progress in Energy and Combustion Science, 59, 1-31(2017).
[17] C LIU, L J XU, J L CHEN et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration. Optics Express, 23, 22494-22511(2015).
[18] C LIU, Z CAO, Y Z LIN et al. Online cross-sectional monitoring of a swirling flame using TDLAS tomography. IEEE Transactions on Instrumentation and Measurement, 67, 1338-1348(2018).
[19] W W CAI, C F KAMINSKI. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers. Applied Physics Letters, 104(2014).
[20] [20] 刘博文, 郭晓阳, 胡二江, 等. 氨气掺混乙烯层流燃烧速度测量及动力学分析[J]. 工程热物理学报, 2024, 45(2): 558-568.LIUB W, GUOX Y, HUE J, et al. Measurement and kinetic analysis on laminar burning velocities of ammonia/ethylene/air flames[J]. Journal of Engineering Thermophysics, 2024, 45(2): 558-568.(in Chinese)
[21] D H ZHU, L RUWE, S SCHMITT et al. Interactions in ammonia and hydrogen oxidation examined in a flow reactor and a shock tube. The Journal of Physical Chemistry A, 127, 2351-2366(2023).
[22] J X LIU, Q GAO, B LI et al. Ammonia measurements with femtosecond two-photon laser-induced fluorescence in premixed NH3/air flames. Energy & Fuels, 34, 1177-1183(2020).
[23] C J DASCH. One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Applied Optics, 31, 1146-1152(1992).
[24] P C HANSEN, D P O’LEARY. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14, 1487-1503(1993).
[25] G SHENG, L MA, D WEN et al. Simultaneo-us measurements of temperature, CO2 concentra-tion and soot volume fraction in counterflow d-iffusion flames using a single mid-infrared laser. Applied physics B, 128, 62(2022).
[26] D X WEN, Y WANG. Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser. Optics Express, 28, 37879(2020).
[27] D DISO, M R PERRONE, M L PROTOPAPA. Beam width measurements of asymmetric multi-mode laser beams. Optics & Laser Technology, 31, 411-418(1999).
[28] E C OKAFOR, Y NAITO, S COLSON et al. Experimental and numerical study of the laminar burning velocity of CH4
[29] L XU, F W YAN, M X ZHOU et al. An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy, 218, 119479(2021).
[30] C Y WEI, D I PINEDA, L PAXTON et al. Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames. Applied Physics B, 124, 123(2018).
[31] K P CHEONG, L H MA, Z WANG et al. Influence of line pair selection on flame tomography using infrared absorption spectroscopy. Applied Spectroscopy, 73, 529-539(2019).
Get Citation
Copy Citation Text
Shengyao LU, Liuhao MA, Jianpeng ZHANG, Qing LI, Jiwei ZHOU, Tao WAN, Yu WANG. Temperature measurement in methane-ammonia co-fired laminar premixed flame using mid-infrared laser absorption tomography[J]. Optics and Precision Engineering, 2024, 32(18): 2733
Category:
Received: Jul. 18, 2024
Accepted: --
Published Online: Nov. 18, 2024
The Author Email: MA Liuhao (liuhaoma@whut.edu.cn)