Matter and Radiation at Extremes, Volume. 6, Issue 3, 038403(2021)
Prediction of anomalous LA-TA splitting in electrides
[1] M.Born, K.Huang. Dynamical Theory of Crystal Lattices(1954).
[2] N. W.Ashcroft, N. D.Mermin. Solid State Physics(1976).
[3] S. S.Mitra. Grüneisen parameter for long wavelength optical modes in ionic crystals. Phys. Status Solidi, 9, 519(1965).
[4] A. S.Barker, H. W.Verleur. Long wavelength optical phonon vibrations in mixed crystals. Solid State Commun., 5, 695(1967).
[5] J. R.Ferraro, S. S.Mitra, C.Postmus. Pressure dependence of long-wavelength optical phonons in ionic crystals. Phys. Rev. Lett., 18, 455(1967).
[6] M. C.Abramo, M.Parrinello, D. E.Thornton, M. P.Tosi. Optical modes in binary alloys. Phys. Lett. A, 43, 483(1973).
[7] R. J.Crook, J. R.Sambles, F.Yang. Long-range optical modes supported by a strongly absorbing thin organic film. J. Opt. Soc. Am. B, 10, 237(1993).
[8] S.Chuchupal, G.Komandin, O.Porodinkov, I.Spektor, A.Volkov. Giant LO-TO frequency splitting of the soft mode in perovskites. Ferroelectrics, 463, 1(2014).
[9] J. L.Dye, J. S.Landers, M. J.Sienko, A.Stacy. Temperature-dependent electron spin interactions in lithium [2.1.1] cryptate electride powders and films. J. Phys. Chem., 85, 1096(1981).
[10] K.Hayashi, M.Hirano, H.Hosono, T.Kamiya, S.Matsuishi, M.Miyakawa, I.Tanaka, Y.Toda. High-density electron anions in a nanoporous single crystal:[Ca24Al28O64] 4+(4e-). Science, 301, 626(2003).
[11] R.Hoffmann, M.-S.Miao. High pressure electrides: A predictive chemical and physical theory. Acc. Chem. Res., 47, 1311(2014).
[12] Y.Ma, H.Wang, Y.Wang, L.Zhang, Y.Zhang. Computer-assisted inverse design of inorganic electrides. Phys. Rev. X, 7, 011017(2017).
[13] L. A.Burton, W.Chen, G.Hautier, F.Ricci, G.-M.Rignanese. High-throughput identification of electrides from all known inorganic materials. Chem. Mater., 30, 7521(2018).
[14] K.Choudhary, T.Frolov, Q.Zhu. Computational discovery of inorganic electrides from an automated screening. Matter, 1, 1293(2019).
[15] G.Gao, P.Li, Y.Ma, Y.Wang. Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C, 114, 021745(2010).
[16] R. J.Needs, C. J.Pickard. Aluminium at terapascal pressures. Nat. Mater., 9, 624(2010).
[17] M.Martinez-Canales, R. J.Needs, C. J.Pickard. Thermodynamically stable phases of carbon at multiterapascal pressures. Phys. Rev. Lett., 108, 045704(2012).
[18] X.-R.Chen, Y.-M.Chen, H.-Y.Geng, Z.-W.Wang, Q.Wu, X.-Z.Yan. Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure. Chin. Phys. B, 26, 056102(2017).
[19] H.Cheng, Y. P.Feng, W.Kong, L.Shen, M.Yang, J.Zhou. Discovery of hidden classes of layered electrides by extensive high-throughput material screening. Chem. Mater., 31, 1860(2019).
[20] H.Gou, B.Wan, L.Wu, J.Zhang. High-pressure electrides: From design to synthesis. Chin. Phys. B, 28, 106201(2019).
[21] J. L.Dye. Electrides: Ionic salts with electrons as the anions. Science, 247, 663(1990).
[22] C.Haas, H.Krakauer, W. E.Pickett, D. J.Singh. Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e−. Nature, 365, 39(1993).
[23] J. L.Dye. Electrons as anions. Science, 301, 607(2003).
[24] G.Yang, X.Zhang. Recent advances and applications of inorganic electrides. J. Phys. Chem. Lett., 11, 3841(2020).
[25] N. W.Ashcroft, J. B.Neaton. Pairing in dense lithium. Nature, 400, 141(1999).
[26] G. J.Ackland, E.Gregoryanz, C. L.Guillaume, M.Hanfland, M.Marqués, M. I.McMahon, R. J.Nelmes, C. J.Pickard. Crystal structures of dense lithium: A metal-semiconductor-metal transition. Phys. Rev. Lett., 106, 095502(2011).
[27] M.Eremets, A. O.Lyakhov, Y.Ma, S.Medvedev, A. R.Oganov, V.Prakapenka, I.Trojan, M.Valle, Y.Xie. Transparent dense sodium. Nature, 458, 182(2009).
[28] Y.Chen, H. Y.Geng, Y.Sun, Z.Yu. Optical properties of dense lithium in electride phases by first-principles calculations. Sci. Rep., 8, 3868(2018).
[29] D.Alfè. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 180, 2622(2009).
[30] S. A.Bonev, S. X.Hu, V. V.Karasiev, R.Paul, D. N.Polsin. Thermal effects on the electronic properties of sodium electride under high pressures. Phys. Rev. B, 102, 094103(2020).
[31] R.Hoffmann, M.-s.Miao. High-pressure electrides: The chemical nature of interstitial quasiatoms. J. Am. Chem. Soc., 137, 3631(2015).
[32] J.Botana, R. J.Hemley, R.Hoffmann, M.-s.Miao, I. I.Naumov. Quasimolecules in compressed lithium. Angew. Chem., Int. Ed., 56, 972(2016).
[33] R. F. W.Bader. Atoms in molecules: A quantum theory. J. Mol. Struct.: THEOCHEM, 360, 1(1996).
[34] G.Henkelman, E.Sanville, W.Tang. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter, 21, 084204(2009).
[35] P.Hohenberg, W.Kohn. Inhomogeneous electron gas. Phys. Rev., 136, B864(1964).
[36] W.Kohn, L. J.Sham. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev., 137, A1697(1965).
[37] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 011169(1996).
[38] J.Furthmüller, G.Kresse. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15(1996).
[39] D.Joubert, G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758(1999).
[40] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 017953(1994).
[41] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).
[42] S.Baroni, R.Resta.
[43] G.Henkelman, S. D.Kenny, E.Sanville, R.Smith. An improved grid-based algorithm for Bader charge allocation. J. Comput. Chem., 28, 899(2007).
[44] A.Arnaldsson, G.Henkelman, H.Jónsson. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 36, 354(2006).
[45] D. R.Trinkle, M.Yu. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys., 134, 064111(2011).
[46] Y.Chen, H. Y.Geng, S.Li, Y.Sun, Q.Wu, X.Yan, L.Zhang. Interplay of anionic quasi-atoms and interstitial point defects in electrides: Abnormal interstice occupation and colossal charge state of point defects in dense fcc-lithium. ACS Appl. Mater. Interfaces, 13, 6130(2021).
Get Citation
Copy Citation Text
Leilei Zhang, Hua Y. Geng, Q. Wu. Prediction of anomalous LA-TA splitting in electrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038403
Category: High Pressure Physics and Materials Science
Received: Jan. 7, 2021
Accepted: Mar. 24, 2021
Published Online: May. 21, 2021
The Author Email: Geng Hua Y. (s102genghy@caep.cn)