Electronics Optics & Control, Volume. 30, Issue 8, 1(2023)
UAV Path Planning Based on Reverse Reinforcement Learning
[3] [3] YANG L C.Practical problems and solutions in age trend-line analyses for energetic components[C]//The 43th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cincinnati,OH:AIAA,2007:1384-1395.
[4] [4] ENDO G,MORIMOTO J,MATSUBARA T,et al.Learning CPG-based biped locomotion with a policy gradient method:application to a humanoid robot[J].The International Journal of Robotics Research,2008,27(2):213-228.
[5] [5] WANG Z,LI L H,XU Y,et al.Handover control in wireless systems via asynchronous multiuser deep reinforcement learning[J].IEEE Internet of Things Journal,2018, 5(6):4296-4307.
[6] [6] LIU H P,WU Y P,SUN F C.Extreme trust region policy optimization for active object recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2018, 29(6):2253-2258.
Get Citation
Copy Citation Text
YANG Xiuxia, WANG Chenlei, ZHANG Yi, YU Hao, JIANG Zijie. UAV Path Planning Based on Reverse Reinforcement Learning[J]. Electronics Optics & Control, 2023, 30(8): 1
Category:
Received: Jul. 18, 2022
Accepted: --
Published Online: Jan. 17, 2024
The Author Email: