Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2950(2024)

Preparation and Mechanism of Near Net Size ZnO Porous Ceramics

XIA Zun1, RONG Yedong2, LI Hao2, DONG Ye2, YU Hongbo1, WANG Xiuhui1, and YANG Jinlong1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] STUDART A R, GONZENBACH U T, TERVOORT E, et al.Processing routes to macroporous ceramics: A review[J]. J Am Ceram Soc, 2006, 89(6): 1771–1789.

    [2] [2] HUO W L, ZHANG X Y, CHEN Y G, et al. Mechanical strength of highly porous ceramic foams with thin and lamellate cell wall from particle-stabilized foams[J]. Ceram Int, 2018, 44(5): 5780–5784.

    [3] [3] SUN Y Q, ZHAO Z H, LI X L, et al. A novel aerogels/porous Si3N4 ceramics composite with high strength and improved thermal insulation property[J]. Ceram Int, 2018, 44(5): 5233–5237.

    [4] [4] MENG X Y, XU J, ZHU J T, et al. Porous yttria-stabilized zirconia ceramics with low thermal conductivity via a novel foam-gelcasting method[J]. J Mater Sci, 2020, 55(31): 15106–15116.

    [5] [5] CHEN S L, WANG L, HE G, et al. Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high-temperature synthesis (SHS)[J]. J Adv Ceram, 2022, 11(1): 172–183.

    [6] [6] LIU J J, REN B, ZHANG S H, et al. Hierarchical ceramic foams with 3D interconnected network architecture for superior high-temperature particulate matter capture[J]. ACS Appl Mater Interfaces, 2019, 11(43):40585–40591.

    [7] [7] HE C, SHUI A Z, MA J, et al. In situ growth magnesium borate whiskers and synthesis of porous ceramics for sound-absorbing[J].Ceram Int, 2020, 46(18): 29339–29343.

    [8] [8] HAN C, WANG Y D, LEI Y P, et al. Modification of hierarchically porous SiC ultrafine fibers with tunable nitrogen-containing surface[J].Ceram Int, 2016, 42(4): 5368–5374.

    [9] [9] LIU J J, LI Y B, LI Y W, et al. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent[J]. Ceram Int, 2016, 42(7): 8221–8228.

    [10] [10] AL AMIN MUHAMAD NOR M, HONG L C, ARIFIN AHMAD Z, et al. Preparation and characterization of ceramic foam produced via polymeric foam replication method[J]. J Mater Process Technol, 2008,207(1/3): 235–239.

    [11] [11] ZHOU W Y, ZHANG Z, LI N, et al. A new mullite foamed ceramic prepared by direct-foaming methods in parallel with a mechanical activation technique[J]. Ceram Int, 2022, 48(14): 20721–20730.

    [12] [12] HUO W L, ZHANG X Y, CHEN Y G, et al. Novel mullite ceramic foams with high porosity and strength using only fly ash hollow spheres as raw material[J]. J Eur Ceram Soc, 2018, 38(4): 2035–2042.

    [13] [13] ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: Issues, potentialities, and opportunities[J]. J Am Ceram Soc, 2015, 98(7): 1983–2001.

    [14] [14] JIA D C, SHAO Y F, LIU B Y, et al. Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by Sol infiltration[J]. Mater Chem Phys, 2010, 124(1): 97–101.

    [15] [15] LI H, LI C W, WU L H, et al. Near net size sintering of porous cordierite ceramics with excellent properties[J]. J Alloys Compd, 2020,826: 154121.

    [16] [16] LIN L, WANG H C, XIA C H, et al. Low sintering shrinkage porous mullite ceramics with high strength and low thermal conductivity via foam–gelcasting[J]. J Am Ceram Soc, 2023, 106(6): 3800–3811.

    [17] [17] XIA Z, RONG Y D, LI H, et al. Non-shrinkage porous ceramics by In-situ hollow sphere method based on the Kirkendall effect of Al particle[J]. J Eur Ceram Soc, 2023, 43(14): 6208–6215.

    [18] [18] SIDIROPOULOS T P H, R?DER R, GEBURT S, et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency[J]. Nat Phys, 2014, 10: 870–876.

    [19] [19] THIRUKUMARAN P, ATCHUDAN R, PARVEEN A S, et al.Fabrication of ZnO nanoparticles adorned nitrogen-doped carbon balls and their application in photodegradation of organic dyes[J]. Sci Rep,2019, 9(1): 19509.

    [20] [20] FARIA F P, RUELLAS T M O, DEL ROVERI C, et al. Obtaining porous zinc oxide ceramics using replica technique: Application in photocatalysis[J]. Mat Res, 2022, 25(1): 1–12.

    [21] [21] NAKAMURA R, LEE J G, TOKOZAKURA D, et al. Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles[J].Mater Lett, 2007, 61(4/5): 1060–1063.

    [23] [23] KOU H M, WANG J, PAN Y B, et al. Fabrication of hollow ZnO microsphere with zinc powder precursor[J]. Mater Chem Phys, 2006,99(2/3): 325–328.

    [24] [24] NIU K Y, PARK J, ZHENG H M, et al. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect[J]. Nano Lett,2013, 13(11): 5715–5719.

    [25] [25] OHASHI T, KURODA K, SAKA H. In situ electron microscopy of melting and solidification of in particles embedded in an Fe matrix[J].Philos Mag B, 1992, 65(5): 1041–1052.

    [26] [26] QI W H, WANG M P, XU G Y. The particle size dependence of cohesive energy of metallic nanoparticles[J]. Chem Phys Lett, 2003,372(5/6): 632–634.

    [27] [27] SMIGELSKAS A D, KIRKENDALL E O. Zinc diffusion in alpha-brass[J]. Transactions Am Institute Mining Metallurg Eng, 1947,171: 130–142.

    Tools

    Get Citation

    Copy Citation Text

    XIA Zun, RONG Yedong, LI Hao, DONG Ye, YU Hongbo, WANG Xiuhui, YANG Jinlong. Preparation and Mechanism of Near Net Size ZnO Porous Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2950

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 9, 2023

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: Jinlong YANG (jlyang@mail.tsinghua.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230975

    Topics