Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2950(2024)
Preparation and Mechanism of Near Net Size ZnO Porous Ceramics
[1] [1] STUDART A R, GONZENBACH U T, TERVOORT E, et al.Processing routes to macroporous ceramics: A review[J]. J Am Ceram Soc, 2006, 89(6): 1771–1789.
[2] [2] HUO W L, ZHANG X Y, CHEN Y G, et al. Mechanical strength of highly porous ceramic foams with thin and lamellate cell wall from particle-stabilized foams[J]. Ceram Int, 2018, 44(5): 5780–5784.
[3] [3] SUN Y Q, ZHAO Z H, LI X L, et al. A novel aerogels/porous Si3N4 ceramics composite with high strength and improved thermal insulation property[J]. Ceram Int, 2018, 44(5): 5233–5237.
[4] [4] MENG X Y, XU J, ZHU J T, et al. Porous yttria-stabilized zirconia ceramics with low thermal conductivity via a novel foam-gelcasting method[J]. J Mater Sci, 2020, 55(31): 15106–15116.
[5] [5] CHEN S L, WANG L, HE G, et al. Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high-temperature synthesis (SHS)[J]. J Adv Ceram, 2022, 11(1): 172–183.
[6] [6] LIU J J, REN B, ZHANG S H, et al. Hierarchical ceramic foams with 3D interconnected network architecture for superior high-temperature particulate matter capture[J]. ACS Appl Mater Interfaces, 2019, 11(43):40585–40591.
[7] [7] HE C, SHUI A Z, MA J, et al. In situ growth magnesium borate whiskers and synthesis of porous ceramics for sound-absorbing[J].Ceram Int, 2020, 46(18): 29339–29343.
[8] [8] HAN C, WANG Y D, LEI Y P, et al. Modification of hierarchically porous SiC ultrafine fibers with tunable nitrogen-containing surface[J].Ceram Int, 2016, 42(4): 5368–5374.
[9] [9] LIU J J, LI Y B, LI Y W, et al. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent[J]. Ceram Int, 2016, 42(7): 8221–8228.
[10] [10] AL AMIN MUHAMAD NOR M, HONG L C, ARIFIN AHMAD Z, et al. Preparation and characterization of ceramic foam produced via polymeric foam replication method[J]. J Mater Process Technol, 2008,207(1/3): 235–239.
[11] [11] ZHOU W Y, ZHANG Z, LI N, et al. A new mullite foamed ceramic prepared by direct-foaming methods in parallel with a mechanical activation technique[J]. Ceram Int, 2022, 48(14): 20721–20730.
[12] [12] HUO W L, ZHANG X Y, CHEN Y G, et al. Novel mullite ceramic foams with high porosity and strength using only fly ash hollow spheres as raw material[J]. J Eur Ceram Soc, 2018, 38(4): 2035–2042.
[13] [13] ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: Issues, potentialities, and opportunities[J]. J Am Ceram Soc, 2015, 98(7): 1983–2001.
[14] [14] JIA D C, SHAO Y F, LIU B Y, et al. Characterization of porous silicon nitride/silicon oxynitride composite ceramics produced by Sol infiltration[J]. Mater Chem Phys, 2010, 124(1): 97–101.
[15] [15] LI H, LI C W, WU L H, et al. Near net size sintering of porous cordierite ceramics with excellent properties[J]. J Alloys Compd, 2020,826: 154121.
[16] [16] LIN L, WANG H C, XIA C H, et al. Low sintering shrinkage porous mullite ceramics with high strength and low thermal conductivity via foam–gelcasting[J]. J Am Ceram Soc, 2023, 106(6): 3800–3811.
[17] [17] XIA Z, RONG Y D, LI H, et al. Non-shrinkage porous ceramics by In-situ hollow sphere method based on the Kirkendall effect of Al particle[J]. J Eur Ceram Soc, 2023, 43(14): 6208–6215.
[18] [18] SIDIROPOULOS T P H, R?DER R, GEBURT S, et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency[J]. Nat Phys, 2014, 10: 870–876.
[19] [19] THIRUKUMARAN P, ATCHUDAN R, PARVEEN A S, et al.Fabrication of ZnO nanoparticles adorned nitrogen-doped carbon balls and their application in photodegradation of organic dyes[J]. Sci Rep,2019, 9(1): 19509.
[20] [20] FARIA F P, RUELLAS T M O, DEL ROVERI C, et al. Obtaining porous zinc oxide ceramics using replica technique: Application in photocatalysis[J]. Mat Res, 2022, 25(1): 1–12.
[21] [21] NAKAMURA R, LEE J G, TOKOZAKURA D, et al. Formation of hollow ZnO through low-temperature oxidation of Zn nanoparticles[J].Mater Lett, 2007, 61(4/5): 1060–1063.
[23] [23] KOU H M, WANG J, PAN Y B, et al. Fabrication of hollow ZnO microsphere with zinc powder precursor[J]. Mater Chem Phys, 2006,99(2/3): 325–328.
[24] [24] NIU K Y, PARK J, ZHENG H M, et al. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect[J]. Nano Lett,2013, 13(11): 5715–5719.
[25] [25] OHASHI T, KURODA K, SAKA H. In situ electron microscopy of melting and solidification of in particles embedded in an Fe matrix[J].Philos Mag B, 1992, 65(5): 1041–1052.
[26] [26] QI W H, WANG M P, XU G Y. The particle size dependence of cohesive energy of metallic nanoparticles[J]. Chem Phys Lett, 2003,372(5/6): 632–634.
[27] [27] SMIGELSKAS A D, KIRKENDALL E O. Zinc diffusion in alpha-brass[J]. Transactions Am Institute Mining Metallurg Eng, 1947,171: 130–142.
Get Citation
Copy Citation Text
XIA Zun, RONG Yedong, LI Hao, DONG Ye, YU Hongbo, WANG Xiuhui, YANG Jinlong. Preparation and Mechanism of Near Net Size ZnO Porous Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2950
Category:
Received: Dec. 9, 2023
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Jinlong YANG (jlyang@mail.tsinghua.edu.cn)