Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2907(2024)

High-Entropy Ceramics ReVO4 and Microwave Dielectric Properties

CHEN Deqin1... MO Chen1, NONG Lianting1, CUI Hongbo1, WANG Zhengfeng2, LIU Laijun1, and LI Chunchun12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(31)

    [1] [1] CHEN L, DENG S Q, LIU H, et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design[J]. Nat Commun, 2022, 13(1): 3089.

    [2] [2] CHEN L, YU H F, WU J, et al. Large energy capacitive high-entropy lead-free ferroelectrics[J]. Nanomicro Lett, 2023, 15(1): 65.

    [3] [3] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.

    [4] [4] CHEN D Q, ZHU X W, YANG X R, et al. A review on structure–property relationships in dielectric ceramics using high-entropy compositional strategies[J]. J Am Ceram Soc, 2023,106(11): 6602–6616.

    [5] [5] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3):385–441.

    [6] [6] BRAUN J L, ROST C M, LIM M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides[J]. Adv Mater, 2018, 30(51): e1805004.

    [7] [7] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5: 295–309.

    [8] [8] BéRARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides[J]. Phys Status Solidi RRL, 2016, 10(4):328–333.

    [9] [9] ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides[J]. Ceram Int, 2020, 46(6): 7430–7437.

    [10] [10] LIU J, REN K, MA C Y, et al. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic[J].Ceram Int, 2020, 46(12): 20576–20581.

    [11] [11] YANG B B, ZHANG Y, PAN H, et al. High-entropy enhanced capacitive energy storage[J]. Nat Mater, 2022, 21(9): 1074–1080.

    [12] [12] PENG Y F, LI J Z, XIAO E C, et al. Lattice vibrational characteristics, dielectric properties and structure-property relationships of(1–x)SrWO4–xTiO2 composite ceramics[J]. Mater Chem Phys, 2021,258: 123889.

    [13] [13] PENG H Y, HUANG J, REN H S, et al. Parallel structure enhanced polysilylaryl-enyne/Ca0.9La0.067TiO3 composites with ultra-high dielectric constant and thermal conductivity[J]. ACS Appl Mater Interfaces, 2022, 14(40): 45893–45903.

    [14] [14] LIU K, ZHANG H W, LIU C, et al. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - A novel high-entropy ceramic[J]. Ceram Int, 2022, 48(16): 23307–23313.

    [15] [15] CHEN D Q, ZHU X W, XIONG S Y, et al. Tunable microwave dielectric properties in rare-earth niobates via a high-entropy configuration strategy to induce ferroelastic phase transition[J]. ACS Appl Mater Interfaces, 2023, 15(45): 52776–52787.

    [16] [16] XIANG H C, YAO L, CHEN J Q, et al. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies[J]. J Mater Sci Technol, 2021, 93: 28–32.

    [17] [17] LIN F L, LIU B, HU C C, et al. Novel high-entropy microwave dielectric ceramics Sr(La0.2Nd0.2Sm0.2Eu0.2Gd0.2)AlO4 with excellent temperature stability and mechanical properties[J]. J Eur Ceram Soc,2023, 43(6): 2506–2512.

    [18] [18] LIN F L, LIU B, ZHOU Q W, et al. Novel non-equimolar SrLa(Al0.25Zn0.125Mg0.125Ga0.25Ti0.25)O4 high-entropy ceramics with excellent mechanical and microwave dielectric properties[J]. J Eur Ceram Soc, 2023, 43(15): 6909–6915.

    [19] [19] XIE M J, LI X, LAI Y M, et al. Phase evolution and microware dielectric properties of high-entropy spinel-type (Mg0.2Co0.2Ni0.2Li0.4 Zn0.2)Al2O4 ceramics[J]. J Eur Ceram Soc, 2024, 44(1): 284–292.

    [20] [20] OLIVEIRA R G M, DE MORAIS J E V, BATISTA G S, et al. Dielectric characterization of BiVO4–TiO2 composites and applications in microwave range[J]. J Alloys Compd, 2019, 775: 889–895.

    [21] [21] WANG Y, ZUO R Z, ZHANG C, et al. Low-temperature-fired ReVO4(Re = La, Ce) microwave dielectric ceramics[J]. J Am Ceram Soc, 2015,98(1): 1–4.

    [22] [22] LI W, FANG L, SUN Y H, et al. Preparation, crystal structure and microwave dielectric properties of rare-earth vanadates: ReVO4(Re=Nd, Sm)[J]. J Electron Mater, 2017, 46(4): 1956–1962.

    [23] [23] VALANT M, SUVOROV D. Chemical compatibility between silver electrodes and low-firing binary-oxide compounds: Conceptual study[J].J Am Ceram Soc, 2000, 83(11): 2721–2729.

    [24] [24] ZHOU D, LI W B, XI H H, et al. Phase composition, crystal structure,infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4–YVO4 system[J]. J Mater Chem C, 2015, 3(11): 2582–2588.

    [25] [25] ZHOU D, PANG L X, GUO J, et al. Influence of Ce substitution for Bi in BiVO4 and the impact on the phase evolution and microwave dielectric properties[J]. Inorg Chem, 2014, 53(2): 1048–1055.

    [26] [26] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr Sect A, 1976, 32(5): 751–767.

    [27] [27] GUO H H, ZHOU D, LIU W F, et al. Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics[J]. J Am Ceram Soc, 2020, 103(1): 423–431.

    [28] [28] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. J Appl Phys, 1993, 73(1): 348–366.

    [29] [29] BRESE N E, O’KEEFFE M. Bond-valence parameters for solids[J].Acta Crystallogr Sect B, 1991, 47(2): 192–197.

    [30] [30] KIM E S, CHUN B S, FREER R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca,Pb, Ba; B6+: Mo, W) ceramics[J]. J Eur Ceram Soc, 2010, 30(7):1731–1736.

    [31] [31] CHEN L, CHEN Z T, LI B. DyVO4: A novel microwave dielectric ceramic with low dielectric constant[J]. Phys B Condens Matter, 2023,649: 414462.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Deqin, MO Chen, NONG Lianting, CUI Hongbo, WANG Zhengfeng, LIU Laijun, LI Chunchun. High-Entropy Ceramics ReVO4 and Microwave Dielectric Properties[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2907

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: Chunchun LI (lichunchun2003@126.com)

    DOI:10.14062/j.issn.0454-5648.20240163

    Topics