Infrared and Laser Engineering, Volume. 51, Issue 1, 20210850(2022)

Recent progress of 1.7 μm ultrafast fiber lasers (Invited)

Zeyu Zhan... Jixiang Chen, Meng Liu, Aiping Luo, Wencheng Xu and Zhichao Luo* |Show fewer author(s)
Author Affiliations
  • School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
  • show less
    References(53)

    [1] F W Wise, A Chong, W H Renninger. High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser & Photonics Reviews, 2, 58-73(2008).

    [2] C Kerse, H Kalaycıoğlu, P Elahi, et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [3] N G Horton, K Wang, D Kobat, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 7, 205-209(2013).

    [4] E Agrell, M Karlsson, A R Chraplyvy, et al. Roadmap of optical communications. Journal of Optics, 18, 063002(2016).

    [5] W Shi, Q Fang, X Zhu, et al. Fiber lasers and their applications. Applied Optics, 53, 6554-6568(2014).

    [6] A N Bashkatov, E A Genina, V I Kochubey, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm. Optics and Spectroscopy, 99, 836-842(2005).

    [7] L A Sordillo, Y Pu, S Pratavieira, et al. Deep optical imaging of tissue using the second and third near-infrared spectral windows. Journal of Biomedical Optics, 19, 056004(2014).

    [8] L Shi, L A Sordillo, A Rodríguez‐Contreras, et al. Transmission in near‐infrared optical windows for deep brain imaging. Journal of Biophotonics, 9, 38-43(2016).

    [9] W R Zipfel, R M Williams, W W Webb. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnology, 21, 1369-1377(2003).

    [10] P Cadroas, L Abdeladim, L Kotov, et al. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy. Journal of Optics, 19, 065506(2017).

    [11] Y Nomura, H Murakoshi, T Fuji. Short-wavelength, ultrafast thulium-doped fiber laser system for three-photon microscopy. OSA Continuum, 3, 1428-1435(2020).

    [12] U Sharma, E W Chang, S H Yun. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth. Optics Express, 16, 19712-19723(2008).

    [13] S P Chong, C W Merkle, D F Cooke, et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Optics Letters, 40, 4911-4914(2015).

    [14] M Yamanaka, T Teranishi, H Kawagoe, et al. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging. Scientific Reports, 6, 31715(2016).

    [15] H Kawagoe, S Ishida, M Aramaki, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography. Biomedical Optics Express, 5, 932-943(2014).

    [16] M Wu, K Jansen, A F W Steen, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomedical Optics Express, 6, 3276-3286(2015).

    [17] V V Alexander, K Ke, Z Xu, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling. Lasers in Surgery and Medicine, 43, 470-480(2011).

    [18] I Mingareev, F Weirauch, A Olowinsky, et al. Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology, 44, 2095-2099(2012).

    [19] J M O Daniel, N Simakov, M Tokurakawa, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band. Optics Express, 23, 18269-18276(2015).

    [20] K Wang, C Xu. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Applied Physics Letters, 99, 071112(2011).

    [21] T N Nguyen, K Kieu, D Churin, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm. IEEE Photonics Technology Letters, 25, 1893-1896(2013).

    [22] S V Firstov, S V Alyshev, K E Riumkin, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm. Optics Letters, 40, 4360-4363(2015).

    [23] M Yamada, K Senda, T Tanaka, et al. Tm 3+-Tb 3+-doped tunable fibre ring laser for 1700 nm wavelength region. Electronics Letters, 49, 1287-1288(2013).

    [24] T Noronen, O Okhotnikov, R Gumenyuk. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band. Optics Express, 24, 14703-14708(2016).

    [25] S D Agger, J H Povlsen. Emission and absorption cross section of thulium doped silica fibers. Optics Express, 14, 50-57(2006).

    [26] S D Jackson. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared. Laser & Photonics Reviews, 3, 466-482(2009).

    [27] Z Li, Y Jung, J M O Daniel, et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. Optics Letters, 41, 2197-2200(2016).

    [28] C Li, C Kong, K K Y Wong. High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 μm. IEEE Photonics Journal, 11, 1-6(2019).

    [29] K Wang, N G Horton, K Charan, et al. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 20, 50-60(2013).

    [30] H Y Chung, W Liu, Q Cao, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm. Optics Express, 25, 15760-15771(2017).

    [31] D Fehrenbacher, P Sulzer, A Liehl, et al. Free-running performance and full control of a passively phase-stable Er: fiber frequency comb. Optica, 2, 917-923(2015).

    [32] S Firstov, S Alyshev, M Melkumov, et al. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm. Optics Letters, 39, 6927-6930(2014).

    [33] T Noronen, S Firstov, E Dianov, et al. 1700 nm dispersion managed mode-locked bismuth fiber laser. Scientific Reports, 6, 24876(2016).

    [34] A Khegai, M Melkumov, K Riumkin, et al. NALM-based bismuth-doped fiber laser at 1.7 μm. Optics Letters, 43, 1127-1130(2018).

    [35] X Xiao, H Guo, Z Yan, et al. 3 W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping. Applied Physics B, 123, 135(2017).

    [36] M D Burns, P C Shardlow, P Barua, et al. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser. Optics Letters, 44, 5230-5233(2019).

    [37] [37] Wienke A, Wt D, Lecourt J B, et al. High energy, femtosecond fiber laser source at 1750 nm f 3photon microscopy (Conference Presentation)[C]Fiber Lasers Glass Photonics: Materials through Applications, 2018, 10683: 106831T.

    [38] S D Emami, M M Dashtabi, H J Lee, et al. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers. Scientific Reports, 7, 12747(2017).

    [39] L Zhang, J Zhang, Q Sheng, et al. Efficient multi-Watt 1720 nm ring-cavity Tm-doped fiber laser. Optics Express, 28, 37910-37918(2020).

    [40] [40] Puncken O, Kirsch D C, Wienke A, et al. Ultrafast thulium fiber laser operating at 1750 nm [C]Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference, 2017: 1.

    [41] C Li, X Wei, C Kong, et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Photonics, 2, 121302(2017).

    [42] D Anderson, M Desaix, M Lisak, et al. Wave breaking in nonlinear-optical fibers. Journal of the Optical Society of America B, 9, 1358-1361(1992).

    [43] S M J Kelly. Characteristic sideband instability of periodically amplified average soliton. Electronics Letters, 28, 806-807(1992).

    [44] S Chen, Y Chen, K Liu, et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber. Optics Express, 28, 17570-17580(2020).

    [45] S Chen, Y Chen, K Liu, et al. W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7 µm. Optics Letters, 46, 3637-3640(2021).

    [46] P Ciąćka, A Rampur, A Heidt, et al. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. Journal of the Optical Society of America B, 35, 1301-1307(2018).

    [47] Y Nomura, T Fuji. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator. Optics Express, 22, 12461-12466(2014).

    [48] Y Nomura, T Fuji. Generation of Watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier. Optics Express, 25, 13691-13696(2017).

    [49] J X Chen, X Y Li, T J Li, et al. 1.7-μm dissipative soliton Tm-doped fiber laser. Photonics Research, 9, 873-878(2021).

    [50] A Chong, J Buckley, W Renninger, et al. All-normal-dispersion femtosecond fiber laser. Optics Express, 14, 10095-10100(2006).

    [51] L M Zhao, D Y Tang, J Wu. Gain-guided soliton in a positive group-dispersion fiber laser. Optics Letters, 31, 1788-1790(2006).

    [52] P Grelu, N Akhmediev. Dissipative solitons for mode-locked lasers. Nature Photonics, 6, 84-92(2012).

    [53] J X Chen, Z Y Zhan, C Li, et al. 1.7 µm Tm-fiber chirped pulse amplification system with dissipative soliton seed laser. Optics Letters, 46, 5922-5925(2021).

    CLP Journals

    [1] Yuxin Gao, Jixiang Chen, Zexian Zhang, Zeyu Zhan, Zhichao Luo. Research on a 1.7 μm all-fiber mode-locked Tm-doped fiber laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20220234

    Tools

    Get Citation

    Copy Citation Text

    Zeyu Zhan, Jixiang Chen, Meng Liu, Aiping Luo, Wencheng Xu, Zhichao Luo. Recent progress of 1.7 μm ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210850

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Nov. 16, 2021

    Accepted: Dec. 15, 2021

    Published Online: Mar. 8, 2022

    The Author Email: Luo Zhichao (zcluo@scnu.edu.cn)

    DOI:10.3788/IRLA20210850

    Topics