Infrared and Laser Engineering, Volume. 51, Issue 1, 20210850(2022)
Recent progress of 1.7 μm ultrafast fiber lasers (Invited)
[1] Wise F W, Chong A, Renninger W H. High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2, 58-73(2008).
[2] Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).
[3] Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).
[4] Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications[J]. Journal of Optics, 18, 063002(2016).
[5] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Applied Optics, 53, 6554-6568(2014).
[6] Bashkatov A N, Genina E A, Kochubey V I, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm[J]. Optics and Spectroscopy, 99, 836-842(2005).
[7] Sordillo L A, Pu Y, Pratavieira S, et al. Deep optical imaging of tissue using the second and third near-infrared spectral windows[J]. Journal of Biomedical Optics, 19, 056004(2014).
[8] Shi L, Sordillo L A, Rodríguez‐Contreras A, et al. Transmission in near‐infrared optical windows for deep brain imaging[J]. Journal of Biophotonics, 9, 38-43(2016).
[9] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: Multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).
[10] Cadroas P, Abdeladim L, Kotov L, et al. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy[J]. Journal of Optics, 19, 065506(2017).
[11] Nomura Y, Murakoshi H, Fuji T. Short-wavelength, ultrafast thulium-doped fiber laser system for three-photon microscopy[J]. OSA Continuum, 3, 1428-1435(2020).
[12] Sharma U, Chang E W, Yun S H. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth[J]. Optics Express, 16, 19712-19723(2008).
[13] Chong S P, Merkle C W, Cooke D F, et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography[J]. Optics Letters, 40, 4911-4914(2015).
[14] Yamanaka M, Teranishi T, Kawagoe H, et al. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging[J]. Scientific Reports, 6, 31715(2016).
[15] Kawagoe H, Ishida S, Aramaki M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 5, 932-943(2014).
[16] Wu M, Jansen K, Steen A F W, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics[J]. Biomedical Optics Express, 6, 3276-3286(2015).
[17] Alexander V V, Ke K, Xu Z, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 43, 470-480(2011).
[18] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).
[19] Daniel J M O, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).
[20] Wang K, Xu C. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy[J]. Applied Physics Letters, 99, 071112(2011).
[21] Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 25, 1893-1896(2013).
[22] Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 40, 4360-4363(2015).
[23] Yamada M, Senda K, Tanaka T, et al. Tm 3+-Tb 3+-doped tunable fibre ring laser for 1700 nm wavelength region[J]. Electronics Letters, 49, 1287-1288(2013).
[24] Noronen T, Okhotnikov O, Gumenyuk R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band[J]. Optics Express, 24, 14703-14708(2016).
[25] Agger S D, Povlsen J H. Emission and absorption cross section of thulium doped silica fibers[J]. Optics Express, 14, 50-57(2006).
[26] Jackson S D. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared[J]. Laser & Photonics Reviews, 3, 466-482(2009).
[27] Li Z, Jung Y, Daniel J M O, et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers[J]. Optics Letters, 41, 2197-2200(2016).
[28] Li C, Kong C, Wong K K Y. High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 μm[J]. IEEE Photonics Journal, 11, 1-6(2019).
[29] Wang K, Horton N G, Charan K, et al. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 50-60(2013).
[30] Chung H Y, Liu W, Cao Q, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm[J]. Optics Express, 25, 15760-15771(2017).
[31] Fehrenbacher D, Sulzer P, Liehl A, et al. Free-running performance and full control of a passively phase-stable Er: fiber frequency comb[J]. Optica, 2, 917-923(2015).
[32] Firstov S, Alyshev S, Melkumov M, et al. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm[J]. Optics Letters, 39, 6927-6930(2014).
[33] Noronen T, Firstov S, Dianov E, et al. 1700 nm dispersion managed mode-locked bismuth fiber laser[J]. Scientific Reports, 6, 24876(2016).
[34] Khegai A, Melkumov M, Riumkin K, et al. NALM-based bismuth-doped fiber laser at 1.7 μm[J]. Optics Letters, 43, 1127-1130(2018).
[35] Xiao X, Guo H, Yan Z, et al. 3 W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping[J]. Applied Physics B, 123, 135(2017).
[36] Burns M D, Shardlow P C, Barua P, et al. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser[J]. Optics Letters, 44, 5230-5233(2019).
[37] [37] Wienke A, Wt D, Lecourt J B, et al. High energy, femtosecond fiber laser source at 1750 nm f 3photon microscopy (Conference Presentation)[C]Fiber Lasers Glass Photonics: Materials through Applications, 2018, 10683: 106831T.
[38] Emami S D, Dashtabi M M, Lee H J, et al. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers[J]. Scientific Reports, 7, 12747(2017).
[39] Zhang L, Zhang J, Sheng Q, et al. Efficient multi-Watt 1720 nm ring-cavity Tm-doped fiber laser[J]. Optics Express, 28, 37910-37918(2020).
[40] [40] Puncken O, Kirsch D C, Wienke A, et al. Ultrafast thulium fiber laser operating at 1750 nm [C]Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference, 2017: 1.
[41] Li C, Wei X, Kong C, et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser[J]. APL Photonics, 2, 121302(2017).
[42] Anderson D, Desaix M, Lisak M, et al. Wave breaking in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 9, 1358-1361(1992).
[43] Kelly S M J. Characteristic sideband instability of periodically amplified average soliton[J]. Electronics Letters, 28, 806-807(1992).
[44] Chen S, Chen Y, Liu K, et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber[J]. Optics Express, 28, 17570-17580(2020).
[45] Chen S, Chen Y, Liu K, et al. W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7 µm[J]. Optics Letters, 46, 3637-3640(2021).
[46] Ciąćka P, Rampur A, Heidt A, et al. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths[J]. Journal of the Optical Society of America B, 35, 1301-1307(2018).
[47] Nomura Y, Fuji T. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator[J]. Optics Express, 22, 12461-12466(2014).
[48] Nomura Y, Fuji T. Generation of Watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier[J]. Optics Express, 25, 13691-13696(2017).
[49] Chen J X, Li X Y, Li T J, et al. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 9, 873-878(2021).
[50] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).
[51] Zhao L M, Tang D Y, Wu J. Gain-guided soliton in a positive group-dispersion fiber laser[J]. Optics Letters, 31, 1788-1790(2006).
[52] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012).
[53] Chen J X, Zhan Z Y, Li C, et al. 1.7 µm Tm-fiber chirped pulse amplification system with dissipative soliton seed laser[J]. Optics Letters, 46, 5922-5925(2021).
Get Citation
Copy Citation Text
Zeyu Zhan, Jixiang Chen, Meng Liu, Aiping Luo, Wencheng Xu, Zhichao Luo. Recent progress of 1.7 μm ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210850
Category: Lasers & Laser optics
Received: Nov. 16, 2021
Accepted: Dec. 15, 2021
Published Online: Mar. 8, 2022
The Author Email: Zhichao Luo (zcluo@scnu.edu.cn)