Laser & Optoelectronics Progress, Volume. 51, Issue 12, 120001(2014)

Burgeoning Developments in High Repetition Rate Mode Locked Solid-State Laser

Liu Jinghui*, Tian Jinrong, Hu Mengting, and Song Yanrong
Author Affiliations
  • [in Chinese]
  • show less
    References(61)

    [1] [1] Mocker H A, Collins R J. Mode competition and self-locking effects in a Q-switching ruby laser[J]. Appl Phys Lett, 1965, 17(10): 270-273.

    [2] [2] Maria A J D, Stetser D A, Heynau H. Self-mode-locking of lasers with saturable absorbers[J]. Appl Phys Lett, 1966, 8(7): 174-176.

    [3] [3] Duguay M A, Shapiroand S L, Rentzepis P M. Spontaneous appearance of picosecond pulses in ruby and Nd:glass lasers [J]. Phys Rev Lett, 1967, 19(18): 1014-1016.

    [4] [4] Statz H, Tang C L J. Phase locking of modes in lasers[J]. J Appl Phys, 1965, 36(12): 3923-3927.

    [5] [5] Weingarten K J, Shannon D C, Wallance R W, et al.. Two gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser[J]. Opt Lett, 1990, 15(17): 962-964.

    [6] [6] Zhou Feng, Malcolm G P A, Ferguson A I. 1-GHz repetition-rate frequency-modulation mode-locked neodymium lasers at 1.3 μm [J]. Opt Lett, 1991, 16(14): 1101-1103.

    [7] [7] Weingarten K J, Godil A A, Gifford M. FM modelocking at 2.85 GHz using a microwave resonant optical modulator[J]. IEEE Photonic Tech L, 1992, 4(10): 1106-1109.

    [8] [8] Schulz P A, Henion S R. 5-GHZ mode locking of a Nd:YLF laser[J]. Opt Lett, 1991, 16(19): 1502-1504.

    [9] [9] Godil A A, Hou A S, Auld B A, et al.. Harmonic mode locking of a Nd:BEL laser using a 20-GHZ dielectric resonator/optical modulator[J]. Opt Lett, 1991, 16(22): 1765-1767.

    [10] [10] Vieira A J C, Herczfeld P R, Contarino V M. Microchip laser for microwave and millimeter-wave generation[C]. Proceedings SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. New York, 1997. 333.

    [11] [11] Endo M, Ozawa A, Kobayashi Y. Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate[J]. Opt Express, 2012, 20(11): 12191-12197.

    [12] [12] Wasylczyk P, Wunk P, and Radzewicz C. Passively mode-locked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate[J]. Opt Express, 2009, 17(7): 5630-5635.

    [13] [13] Yamazoe S, Katou M, Adachi T, et al.. Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror[J]. Opt Lett, 2010, 35(5): 748-750.

    [14] [14] Schratwieser T C, Leburn C G, and Reud D T. Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser[J]. Opt Lett, 2012, 37(6): 1133-1135.

    [15] [15] Pekarek S, Klenner A, Sdumeyer T, et al.. Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz [J]. Opt Express, 2012, 20(4): 4248-4253.

    [16] [16] Spence D E, Kean P N, Sibbert W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser[J]. Opt Lett, 1991, 16(1): 42-44.

    [18] [18] Liu K X, Flood C J, Walker D R, et al.. Kerr lens mode locking of a diode-pumped Nd:YAG laser[J]. Opt Lett, 1992, 17(19): 1361-1363.

    [20] [20] Xing Qirong, Li Peng, Zhang Weili, et al.. 62 fs self-mode-locked Ti:sapphire laser[J]. Chinese J Lasers, 1993, 20(8): 584.

    [25] [25] Wei Zhiyi, Kobayashi, Yohei, et al.. Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers[J]. Opt Lett, 2001, 26(22): 1806-1806.

    [26] [26] Zhang Chi, Wei Zhiyi, Zhang Ling, et al.. Passively mode-locked Nd:GdVO4 laser at 912 nm[J]. Chin Phys Soc, 2006, 15(11): 2606-2608.

    [27] [27] Wei Zhiyi, Zhong Xin, Zhou Binbin, et al.. Frequency extending of ultrashort laser pulse with lonear and nonlinear processes[J]. Infrared and Laser Engineering, 2008, 37(6): 987-992.

    [29] [29] Ramaswamy M, Fujimoto J G. Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond laser[J]. Opt Lett, 1994, 19(22): 1756-1758.

    [30] [30] Melish R, Chernikov S V, French P M W, et al.. All-solid-state compact high repetition rate modelocked Cr+4:YLF laser [J]. Electron Lett, 1998, 34(6): 552-553.

    [31] [31] Bartels A, Dekorsy T, and Kurz H. Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy[J]. Opt Lett, 1999, 24(14): 996-999.

    [32] [32] Bartels A, Heinecke D, and Diddams S A. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser[J]. Opt Lett, 2008, 33(16): 1905-1908.

    [33] [33] Huang Y J, Liang H C, Chen Y F, et al.. High-power 10-Ghz self-mode-locked Nd:LuVO4 laser[J]. Laser Phys, 2011, 21(10): 1750-1754.

    [34] [34] Huang Y J, Tzeng Y S, Tang C Y, et al.. Tunable GHz pulse repetition rate operation in high-power TEM00-mode Nd:YLF lasers at 1047 nm and 1053 nm with self-mode-locking[J]. Opt Express, 2012, 20(16): 18230-18238.

    [35] [35] Yumashev K, Posnov N, Prokoshin P, et al.. Z-scan measurements of nonlinear refraction and Kerr-lens mode-locking with Yb3+: KY (WO4)2[J]. Opt Quant Electron, 2000, 32(1): 43-48.

    [36] [36] Spuhler G J, Paschotte R, Keller U, et al.. Diode-pumped passively mode-locked Nd:YAG laser with 10-W average output power in a diffraction-limit beam[J]. Opt Lett, 1999, 24(8): 528-530.

    [37] [37] Zhang Z G, Tadashi Nakagawa, Kenji Torizuka, et al.. Self-starting mode locked Cr:YAG laser with a broadband semiconductor saturable absorber mirror[J]. Opt Lett, 1999, 24(23): 1768-1770.

    [38] [38] Krainer L, Paschotta R, Aus der Au J, et al.. Passively mode-locked Nd:YVO4 laser with up to 13 GHz repetition rate[J]. Appl Phys B, 1999, 69(3): 245-247.

    [39] [39] Krainer L, Paschotta R, Lecomte S, et al.. Compact Nd:YVO4 laser with pulse repetition rate up to 160 GHz[J]. IEEE J Quantum Elect, 2002, 38(10): 1331-1339.

    [40] [40] Lecomte S, Kalisch M, Krainer L, et al.. Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate[J]. IEEE J Quantum Elect, 2005, 41(1): 45-53.

    [41] [41] Krainer L, Paschotta R, Spuhler G J, et al.. Tunable picosecond pulse-generating laser with a repetition rate exceeding 10 GHz[J]. Electron Lett, 2002, 38(5): 225-227.

    [42] [42] Spuhler G J, Golding P S, Krainer L, et al.. C-band tunable 25 GHz passively mode-locked Er:Yb:glass laser[J]. Electron Lett, 2003, 39(10): 778-780.

    [43] [43] Zeller S C, Krainer L, Spuhler G J, et al.. Passively mode-locked 40-GHz Er:Yb:glass laser[J]. Appl Phys B, 2003, 76(7): 787-788.

    [44] [44] Zeller S C, Krainer L, Spuhler G J, et al.. Passively mode-locked 50-GHz Er:Yb:glass laser[J]. Electron Lett, 2004, 40(14): 875.

    [45] [45] Oehler A E H, Suedmeyer T, Weingarten K J, et al.. 100-GHz, 1.1-ps pulse train at 1.5 μm from a passively modelocked Er:Yb:Glass laser[C]. Opt Comm. (ECOC). 36th European Conference and Exhibition on, IEEE, 2010. 1-3.

    [46] [46] Keller U, Nelson L E, Chiu T H. Diode-pumped high repetition rate, resonant passive mode-locked Nd:YLF laser[C].Advanced Solid-State Lasers Optical Society of America, 1992. SL5.

    [47] [47] Leburn C G, Lagatsky A A, Brown C T A, et al.. Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate[J]. Electron Lett, 2004, 40(13): 805-807.

    [48] [48] Oehler A E H, Sudmeyer T, Weingarten K J, et al.. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6 ps pulses[J]. Opt Express, 2008, 16(26): 20930-21935.

    [49] [49] Oehler A E H, Stumpf M C, Pekarek S, et al.. Picosecond diode-pumped 1.5 μm Er:Yb:glass lasers operating at 10 -100 GHz repetition rate[J]. Appl Phys B, 2010, 99(1-2): 53-62.

    [50] [50] Wasylczyk P, Wnuk P, Radzewicz C. Passively mode-locked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate[J]. Opt Express, 2009, 17(7): 5630-5635.

    [51] [51] Yang H W, Kim C, Choi S Y, et al.. 1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a carbon nanotube saturable absorber mirror[J]. Opt Express, 2012, 20(28): 29518-29523.

    [52] [52] Klenner A, Golling M, Keller U. A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal[J]. Opt Express, 2013, 21(8): 10351-10358.

    [53] [53] He Jingliang, Hao Xiaopeng, Xu Jinlong, et al.. Ultrafast mode-locked solid-state lasers with graphene saturable absorber[J]. Acta Optica Sinica, 2011, 31(9): 0900138.

    [54] [54] Schmidt A, Rivier S, Cho W B, et al.. Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yblaser operation near 1 micron[J]. Opt Express, 2006, 17(22): 20109-20116.

    [55] [55] Baek I H, Choi S Y, Lee H W, et al.. Single-walled carbon nanotube saturable absorber assisted high power modelocking of Ti:sapphire laser[J]. Opt Express, 2011, 19(8): 7833-7838.

    [56] [56] Cho W B, Schmidt A, Yim J H, et al.. Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber[J]. Opt Express, 2009, 17(13): 11007-11012.

    [57] [57] Fng K H, Kikuchi K, Goh C S, et al.. Solid-state Er:Yb:glass laser mode-locked by using single-walled carbon nanotube thin film[J]. Opt Lett, 2007, 32(1): 38-40.

    [58] [58] Agnesi A, Carra L, Pizrio F, et al.. Diode-pumped Nd:BaY2F8 picosecond laser mode-locked with carbon nanotube saturable absorber[J]. J Opt Soc Am B, 2010, 27(12): 2739-2742.

    [59] [59] Grange R, Zeller S, Haiml M. Antimonide semiconductor saturable absorber for passive mode locking of a 1.5 μm Er:Yb:glass laser at 10 GHz[J]. IEEE J Quantum Elect, 2006, 18(8): 805-807.

    [60] [60] Li D, Demirbas U, Birge J R, et al.. Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power[J]. Opt Lett, 2010, 35(9): 1446-1448.

    [61] [61] Zhang Z Y, Oehler A E H, Resan B, et al.. 1.55 μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM Mode-locked laser[J]. Sci Rep, 2012, 2: 477-482.

    CLP Journals

    [1] Cao Qiuyuan, Peng Jiying, Li Zuohan, Han Ming. Compact and Efficient GHz Nd∶GdVO4/V∶YAG Q-Switched Mode-Locked Laser at 1.34 μm[J]. Laser & Optoelectronics Progress, 2017, 54(6): 61407

    [2] Yu Haibo, Liu Ke, Chen Ying, Tu Wei, Shen Yu, Xu Jialin, Gao Hongwei, Bo Yong, Peng Qinjun, Xu Zuyan. Design of a Compact Passively Air Cooled Picosecond Nd∶YVO4 Picosecond Oscillator[J]. Chinese Journal of Lasers, 2015, 42(8): 802009

    Tools

    Get Citation

    Copy Citation Text

    Liu Jinghui, Tian Jinrong, Hu Mengting, Song Yanrong. Burgeoning Developments in High Repetition Rate Mode Locked Solid-State Laser[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 7, 2014

    Accepted: --

    Published Online: Dec. 2, 2014

    The Author Email: Jinghui Liu (liujinghui@emails.bjut.edu.cn)

    DOI:10.3788/lop51.120001

    Topics