Collection Of theses on high power laser and plasma physics, Volume. 14, Issue 1, 609001(2016)

Research Status and Development Trend of PIE Imaging Method

Yao Yudong1,2、*, Liu Cheng1, Pan Xingchen1, Tao Hua1, Wang Haiyan1, and Zhu Jianqiang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(91)

    [1] [1] McNulty I, Kirz J, Jacobsen C, et al.. High-resolution imaging by Fourier transform X-ray holography[J]. Science, 1992, 256(5059): 1009-1012.

    [2] [2] Eisebitt S, Lüning J, Schlotter W F, et al.. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.

    [3] [3] Zhang F, Yamaguchi I, Yaroslavsky L P. Algorithm for reconstruction of digital holograms with adjustable magnification[J]. Optics Letters, 2004, 29(14): 1668-1670.

    [4] [4] Pan Xingchen, Liu Cheng, Zhu Jianqiang. Improved Fienup′s iteration method for image reconstruction in digital holography[J]. Acta Optica Sinica, 2012, 32(6): 0609002.

    [5] [5] Xia Haoguang, Zhang Jiachen, Ji Xiaoli, et al.. A resolution enhancement method based on interpolation and extrapolation in digital holography[J]. Chinese J Lasers, 2014, 41(4): 0409003.

    [6] [6] Rao C, Jiang W, Ling N. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 1999, 24(15): 1008-1010.

    [7] [7] Costa J B. Modulation effect of the atmosphere in a pyramid wave-front sensor[J]. Applied Optics, 2005, 44(1): 60-66.

    [8] [8] Hoppe W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference[J]. Acta Crystallographica Section A, 1969, 25: 495-501.

    [9] [9] Hoppe W, Strube G. Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences[J]. Acta Crystallographica Section A, 1969, 25: 502-507.

    [10] [10] Hoppe W. Diffraction in inhomogeneous primary wave fields. 3. Amplitude and phase determination for nonperiodic objects[J]. Acta Crystallographica Section A, 1969, 25: 508-515.

    [11] [11] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-250.

    [12] [12] Gerchberg R W. Super-resolution through error energy reduction[J]. Journal of Modern Optics, 1974, 21(9): 709-720.

    [13] [13] Saxton W O. Computer techniques for image processing in electron microscopy[M]. New York: Academic Press, 2013.

    [14] [14] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

    [15] [15] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

    [16] [16] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

    [17] [17] Fienup J R, Crimmins T R, Holsztynski W. Reconstruction of the support of an object from the support of its autocorrelation[J]. Journal of the Optical Society of America, 1982, 72(5): 610-624.

    [18] [18] Crimmins T R, Fienup J R, Thelen B J. Improved bounds on object support from autocorrelation support and application to phase retrieval[J]. Journal of the Optical Society of America A, 1990, 7(1): 3-13.

    [19] [19] Chapman H N, Barty A, Marchesini S, et al.. High-resolution ab initio three-dimensional X-ray diffraction microscopy[J]. Journal of the Optical Society of America A, 2006, 23(5): 1179-1200.

    [20] [20] Lane R G. Phase retrieval using conjugate gradient minimization[J]. Journal of Modern Optics, 1991, 38(9): 1797-1813.

    [21] [21] Fienup J R, Marron J C, Schulz T J, et al.. Hubble space telescope characterized by using phase-retrieval algorithms[J]. Applied Optics, 1993, 32(10): 1747-1767.

    [22] [22] Fienup J R. Phase-retrieval algorithms for a complicated optical system[J]. Applied Optics, 1993, 32(10): 1737-1746.

    [23] [23] Fienup J R. Wave front sensing by nonlinear optimization[C]. Frontiers in Optics, New York, 2006: FML2.

    [24] [24] Nieto-Vesperinas M, Fuentes F J, Navarro R. Performance of a simulated-annealing algorithm for phase retrieval[J]. Journal of the Optical Society of America A, 1988, 5(1): 30-38.

    [25] [25] Takajo H, Takahashi T, Kawanami H, et al.. Numerical investigation of the iterative phase-retrieval stagnation problem: Territories of convergence objects and holes in their boundaries[J]. Journal of the Optical Society of America A, 1997, 14(12): 3175-3187.

    [26] [26] Takajo H, Takahashi T, Ueda R, et al.. Study on the convergence property of the hybrid input-output algorithm used for phase retrieval[J]. Journal of the Optical Society of America A, 1998, 15(11): 2849-2861.

    [27] [27] Takajo H, Takahashi T, Shizuma T. Further study on the convergence property of the hybrid input-output algorithm used for phase retrieval[J]. Journal of the Optical Society of America A, 1999, 16(9): 2163-2168.

    [28] [28] Ivanov V Y, Vorontsov M A, Sivokon V P. Phase retrieval from a set of intensity measurements: Theory and experiment[J]. Journal of the Optical Society of America A, 1992, 9(9): 1515-1524.

    [29] [29] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1): 65-75.

    [30] [30] Hu Xiaojun. Study on phase retrieval on-sit testing for large optics[D]. Changsha: National University of Defense Technology, 2008.

    [31] [31] Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Applied Optics, 2006, 45(34): 8596-8605.

    [32] [32] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833-835.

    [33] [33] Almoro P F, Hanson S G. Random phase plate for wavefront sensing via phase retrieval and a volume speckle field[J]. Applied Optics, 2008, 47(16): 2979-2987.

    [34] [34] Almoro P F, Gundu P N, Hanson S G. Numerical correction of aberrations via phase retrieval with speckle illumination[J]. Optics Letters, 2009, 34(4): 521-523.

    [35] [35] Almoro P F, Pedrini G, Anand A, et al.. Angular displacement and deformation analyses using a speckle-based wavefront sensor[J]. Applied Optics, 2009, 48(5): 932-940.

    [36] [36] Mosso F, Peters E, Pérez D G. Complex wavefront reconstruction from multiple-image planes produced by a focus tunable lens[J]. Optics Letters, 2015, 40(20): 4623-4626.

    [37] [37] Bao P, Zhang F, Pedrini G, et al.. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 2008, 33(4): 309-311.

    [38] [38] Miao J, Charalambous P, Kirz J, et al.. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(6742): 342-344.

    [39] [39] Chapman H N, Nugent K A. Coherent lensless X-ray imaging[J]. Nature Photonics, 2010, 4(12): 833-839.

    [40] [40] Miao J, Chen C C, Song C, et al.. Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy[J]. Physical Review Letters, 2006, 97(21): 215503.

    [41] [41] Cederquist J N, Fienup J R, Wackerman C C, et al.. Wave-front phase estimation from Fourier intensity measurements[J]. Journal of the Optical Society of America A, 1989, 6(7): 1020-1026.

    [42] [42] Brady G R, Fienup J R. Nonlinear optimization algorithm for retrieving the full complex pupil function[J]. Optics Express, 2006, 14(2): 474-486.

    [43] [43] Matsuoka S, Yamakawa K. Wave-front measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method[J]. Journal of the Optical Society of America B, 2000, 17(4): 663-667.

    [44] [44] Marozas J A. Fourier transform-based continuous phase-plate design technique: A high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. Journal of the Optical Society of America A, 2007, 24(1): 74-83.

    [45] [45] Bu S, Wyrowski F. Solving tolerancing and three-dimensional beam shaping problems by multifunctional wave optical design[J]. Optical Engineering, 2001, 40(8): 1590-1597.

    [46] [46] Johnson E G, Brasher J D. Phase encryption of biometrics in diffractive optical elements[J]. Optics Letters, 1996, 21(16): 1271-1273.

    [47] [47] Kane D J, Trebino R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 571-579.

    [48] [48] Trebino R, Kane D J. Using phase retrieval to measure the intensity and phase of ultrashort pulses: Frequency-resolved optical gating[J]. Journal of the Optical Society of America A, 1993, 10(5): 1101-1111.

    [49] [49] Ivankovski Y, Mendlovic D. High-rate-long-distance fiber-optic communication based on advanced modulation techniques[J]. Applied Optics, 1999, 38(26): 5533-5540.

    [50] [50] Morris D. Phase retrieval in the radio holography of reflector antennas and radio telescopes[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(7): 749-755.

    [51] [51] Datta G K, Vasu R M. Non-interferometric methods of phase estimation for application in optical tomography[J]. Journal of Modern Optics, 1999, 46(9): 1377-1388.

    [52] [52] Maleki M H, Devaney A J. Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography[J]. Journal of the Optical Society of America A, 1993, 10(5): 1086-1092.

    [53] [53] Skaar J. Iterative design of antireflection coatings based on the direct and inverse scattering transform[J]. Optics Communications, 2004, 232(1): 45-48.

    [54] [54] Bruck Y M, Sodin L G. On the ambiguity of the image reconstruction problem[J]. Optics Communications, 1979, 30(3): 304-308.

    [55] [55] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150: 87-184.

    [56] [56] Rodenburg J M, Hurst A C, Cullis A G. Transmission microscopy without lenses for objects of unlimited size[J]. Ultramicroscopy, 2007, 107(2): 227-231.

    [57] [57] Pan X, Liu C, Lin Q, et al.. Ptycholographic iterative engine with self-positioned scanning illumination[J]. Optics Express, 2013, 21(5): 6162-6168.

    [58] [58] Maiden A M, Humphry M J, Sarahan M C, et al.. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

    [59] [59] Zhang F, Peterson I, Vila-Comamala J, et al.. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11): 13592-13606.

    [60] [60] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156-158.

    [61] [61] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.

    [62] [62] Beckers M, Senkbeil T, Gorniak T, et al.. Drift correction in ptychographic diffractive imaging[J]. Ultramicroscopy, 2013, 126: 44-47.

    [63] [63] Faulkner H M L, Rodenburg J M. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy[J]. Ultramicroscopy, 2005, 103(2): 153-164.

    [64] [64] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

    [65] [65] Thibault P, Dierolf M, Bunk O, et al.. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.

    [66] [66] Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 2009, 109(10): 1263-1275.

    [67] [67] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

    [68] [68] Godden T M, Suman R, Humphry M J, et al.. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 2014, 22(10): 12513-12523.

    [69] [69] Suzuki A, Furutaku S, Shimomura K, et al.. High-resolution multislice X-ray ptychography of extended thick objects[J]. Physical Review Letters, 2014, 112(5): 053903

    [70] [70] Shimomura K, Suzuki A, Hirose M, et al.. Precession X-ray ptychography with multislice approach[J]. Physical Review B, 2015, 91(21): 214114.

    [71] [71] Liu C, Zhu J Q, Rodenburg J. Influence of the illumination coherency and illumination aperture on the ptychographic iterative microscopy[J]. Chinese Physics B, 2015, 24(2): 024201.

    [72] [72] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

    [73] [73] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13-21.

    [74] [74] Liu Cheng, Pan Xingchen, Zhu Jianqiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18): 184204.

    [75] [75] Pan X, Liu C, Zhu J. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 2013, 103(17): 171105.

    [76] [76] Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 2007, 75(4): 043805.

    [77] [77] Zhang F, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 2010, 82(12): 121104.

    [78] [78] Wang H, Liu C, He X, et al.. Wavefront measurement techniques used in high power lasers[J]. High Power Laser Science and Engineering, 2014, 2(3): 12-23.

    [79] [79] Tao H, Veetil S P, Cheng J, et al.. Measurement of the complex transmittance of large optical elements with modulation coherent imaging[J]. Applied Optics, 2015, 54(7): 1776-1781.

    [80] [80] Tao H, Veetil S P, Pan X, et al.. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method[J]. Applied Optics, 2015, 54(22): 6632-6639.

    [81] [81] He X, Veetil S P, Liu C, et al.. Accurate focal spot diagnostics based on a single shot coherent modulation imaging[J]. Laser Physics Letters, 2015, 12(1): 015005.

    [82] [82] Rodenburg J M, Hurst A C, Cullis A G, et al.. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.

    [83] [83] Hüe F, Rodenburg J M, Maiden A M, et al.. Wave-front phase retrieval in transmission electron microscopy via ptychography[J]. Physical Review B, 2010, 82(12): 121415.

    [84] [84] Humphry M J, Kraus B, Hurst A C, et al.. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3: 730.

    [85] [85] Claus D, Schluesener H, Maiden A, et al.. Ptychography: A powerful phase retrieval technique for biomedical imaging[C]. SPIE, 2011, 8338: 83381G.

    [86] [86] Maiden A M, Humphry M J, Zhang F, et al.. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.

    [87] [87] Wang H Y, Liu C, Veetil S P, et al.. Measurement of the complex transmittance of large optical elements with ptychographical iterative engine[J]. Optics Express, 2014, 22(2): 2159-2166.

    [88] [88] Wang H Y, Veetil S P, Liu C, et al.. Measurement of thermal distortion in high power laser glass elements using ptychography[J]. Laser Physics Letters, 2015, 12(2): 025005.

    [89] [89] Wang H Y, Liu C, Pan X C, et al.. The application of ptychography in the field of high power laser[C]. SPIE, 2015, 9255: 925534.

    [90] [90] Huang X J, Lauer K, Clark J N, et al.. Fly-scan ptychography[J]. Science Report, 2015, 5: 9074.

    [91] [91] Pelz P M, Guizar-Sicairos M, Thibault P, et al.. On-the-fly scans for X-ray ptychography[J]. Applied Physics Letters, 2014, 105(25): 251101.

    Tools

    Get Citation

    Copy Citation Text

    Yao Yudong, Liu Cheng, Pan Xingchen, Tao Hua, Wang Haiyan, Zhu Jianqiang. Research Status and Development Trend of PIE Imaging Method[J]. Collection Of theses on high power laser and plasma physics, 2016, 14(1): 609001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 16, 2015

    Accepted: --

    Published Online: Mar. 23, 2017

    The Author Email: Yudong Yao (yaoyud1990@siom.ac.cn)

    DOI:10.3788/cjl201643.0609001

    Topics