Optics and Precision Engineering, Volume. 31, Issue 7, 1053(2023)
Sand-dust image enhancement using RGB color balance method
[1] SINGH D, KUMAR V. Single image haze removal using integrated dark and bright channel prior[J]. Modern Physics Letters B, 32, 1850051(2018).
[2] LIU W, HOU X X, DUAN J et al. End-to-end single image fog removal using enhanced cycle consistent adversarial networks[J]. IEEE Transactions on Image Processing, 29, 7819-7833(2020).
[3] BU Q R, LUO J, MA K et al. An enhanced pix2pix dehazing network with guided filter layer[J]. Applied Sciences, 10, 5898(2020).
[4] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).
[5] LAND E H. The retinex theory of color vision[J]. Scientific American, 237, 108-128(1977).
[6] LIU C, CHEN X Q, WU Y R. Modified grey world method to detect and restore colour cast images[J]. IET Image Processing, 13, 1090-1096(2019).
[7] ZUIDERVELD K. Contrast Limited Adaptive Histogram Equalization[M]. Graphics Gems, 474-485(1994).
[8] [8] 8刘兴淼, 王仕成, 赵静. 基于小波变换与模糊理论的图像增强算法研究[J]. 弹箭与制导学报, 2010, 30(4): 183-186. doi: 10.3969/j.issn.1673-9728.2010.04.052LIUX M, WANGSH CH, ZHAOJ. Image enhancement algorithm based on wavelet transform and fuzzy set theory[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(4): 183-186.(in Chinese). doi: 10.3969/j.issn.1673-9728.2010.04.052
[9] YAN T, WANG L J, WANG J X. Method to enhance degraded image in dust environment[J]. Journal of Software, 9, 2672-2677(2014).
[10] WANG J, PANG Y W, HE Y Q et al. Enhancement for Dust-sand Storm Images[M]. MultiMedia Modeling, 842-849(2016).
[11] SHI Z H, FENG Y N, ZHAO M H et al. Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand-dust image enhancement[J]. IET Image Processing, 14, 747-756(2020).
[12] MCCARTNEY E J, HALL F F. Optics of the atmosphere: scattering by molecules and particles[J]. Physics Today, 30, 76-77(1977).
[13] YU S Y, ZHU H, WANG J et al. Single sand-dust image restoration using information loss constraint[J]. Journal of Modern Optics, 63, 2121-2130(2016).
[14] GAO G X, LAI H C, JIA Z H et al. Sand-dust image restoration based on reversing the blue channel prior[J]. IEEE Photonics Journal, 12, 1-16(2020).
[15] CAI B L, XU X M, JIA K et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 25, 5187-5198(2016).
[16] DIPTA DAS S, DUTTA S. Fast deep multi-patch hierarchical network for nonhomogeneous image dehazing[C], 1994-2001(2020).
[17] YU Y K, LIU H, FU M H et al. A two-branch neural network for non-homogeneous dehazing via ensemble learning[C], 193-202(2021).
[18] ZOTIN A. Fast algorithm of image enhancement based on multi-scale retinex[J]. Procedia Computer Science, 131, 6-14(2018).
[19] HUANG D M, WANG Y, SONG W et al. Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition[M]. MultiMedia Modeling, 453-465(2018).
[20] SI Y Z, YANG F, GUO Y et al. A comprehensive benchmark analysis for sand dust image reconstruction[J]. Journal of Visual Communication and Image Representation, 89, 103638(2022).
[21] STIPETIĆ V, LONČARIĆ S. Local gray world method for single image dehazing[C](2020).
[22] GATTA C, RIZZI A, MARINI D. ACE:An automatic color equalization algorithm[C], 316-320(2002).
[23] [23] 23王慧芳, 陈远明, 彭荣发, 等. 基于改进RGHS和Canny算子的水下图像边缘检测方法[J]. 自动化与信息工程, 2021, 42(2): 25-30. doi: 10.3969/j.issn.1674-2605.2021.02.005WANGH F, CHENY M, PENGR F, et al. Underwater image edge detection method based on improved RGHS and canny operator[J]. Automation & Information Engineering, 2021, 42(2): 25-30.(in Chinese). doi: 10.3969/j.issn.1674-2605.2021.02.005
[24] CHIANG J Y, CHEN Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 21, 1756-1769(2012).
[25] PARK T H, EOM I K. Sand-dust image enhancement using successive color balance with coincident chromatic histogram[J]. IEEE Access, 9, 19749-19760(2021).
[26] [26] 26王春智, 牛宏侠. 基于直方图均衡化和MSRCR的沙尘降质图像增强算法[J/OL]. 计算机工程, 2021: 1-10. (2021-11-22). https://kns.cnki.net/kcms/detail/31.1289.TP.20211119.1949.016.html.WANGC ZH, NIUH X. A sand-dust degraded image enhancement algorithm based on histogram equalization and MSRCR[J/OL]. Computer Engineering, 2021: 1-10. (2021-11-22). https://kns.cnki.net/kcms/detail/31.1289.TP.20211119. 1949.016.html.(in Chinese)
[28] PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 41, 541-551(2016).
[29] YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 24, 6062-6071(2015).
Get Citation
Copy Citation Text
Yuan DING, Kaijun WU. Sand-dust image enhancement using RGB color balance method[J]. Optics and Precision Engineering, 2023, 31(7): 1053
Category: Information Sciences
Received: Jun. 22, 2022
Accepted: --
Published Online: Apr. 28, 2023
The Author Email: Yuan DING (710326055@qq.com)