Infrared and Laser Engineering, Volume. 53, Issue 9, 20240257(2024)

Staged adaptive optimization of SPGD algorithm in laser coherent beam combining

Wenhui ZHENG1,2,3, Jiaqin QI1,2,3, Wenjun JIANG1,2,3, Guiyuan TAN1,2,3, Qiqi HU5, Huaien GAO4, Jiazhen DOU1,2,3, Jianglei DI1,2,3, and Yuwen QIN1,2,3
Author Affiliations
  • 1Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangzhou 510006, China
  • 3Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangzhou 510006, China
  • 4School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China
  • 5Institute of Fluid Physics, CAEP, Mianyang 621900, China
  • show less
    Figures & Tables(14)
    Laser coherent beam combining system
    Flow chart of SPGD algorithm
    The iteration curves of the evaluation function for the traditional SPGD algorithm at different gain coefficients
    The iteration curves of the evaluation function for the Staged SPGD algorithm at different initial gain coefficients
    The iteration curves of the evaluation function for the two algorithms at different perturbation voltages
    The iteration curves of the evaluation function for the Staged SPGD algorithm at different gradient update factors C
    Comparison of the number of iteration steps as the algorithm converges. (a) SPGD; (b) Adaptive gain SPGD; (c) Staged SPGD
    Iteration curves for five algorithmic evaluation functions. (a) 19 elements; (b) 37 elements; (c) 61 elements; (d) 91 elements
    Comparison of the number of iterations of the five algorithms when converging at different number of beams
    The distribution of the number of iterations at the convergence of the five algorithms
    The average J at different phase noise. (a) 7 elements; (b) 19 elements
    • Table 1. Staged SPGD algorithm process

      View table
      View in Article

      Table 1. Staged SPGD algorithm process

      Staged SPGD algorithm
      1) SetSet initial gain coefficient $ {\gamma ^{\left( 0 \right)}} $,initial phase control voltage $ {{\boldsymbol{u}}^{\left( 0 \right)}} = \left\{ {0, \cdot \cdot \cdot ,0} \right\} $,and gradient update parameters C,get the initial evaluation function $ {J^{\left( 0 \right)}} $
      2) Forn=1,2,···,T do
      3)Generation of random perturbation voltage $ \delta {{\boldsymbol{u}}^{\left( n \right)}} = \left( {\delta u_1^{\left( n \right)},\delta u_2^{\left( n \right)},...\delta u_N^{\left( n \right)}} \right) $ based on $ \left| {\delta {\boldsymbol{u}}} \right| = 1 $
      4)Apply a positive disturbance voltage $ {\boldsymbol{u}}_ + ^{\left( n \right)} = {{\boldsymbol{u}}^{\left( {n - 1} \right)}} + \delta {{\boldsymbol{u}}^{\left( n \right)}} $
      5)Obtain the performance evaluation function $ J_ + ^{\left( n \right)} $and calculate $ \delta J_ + ^{\left( n \right)} = J_ + ^{\left( n \right)} - {J^{\left( {n - 1} \right)}} $
      6)Apply a negative disturbance voltage $ {\boldsymbol{u}}_ - ^{\left( n \right)} = {{\boldsymbol{u}}^{\left( {n - 1} \right)}} - \delta {{\boldsymbol{u}}^{\left( n \right)}} $
      7)Obtain the performance evaluation function $ J_ - ^{\left( n \right)} $ and calculate $ \delta J_ - ^{\left( n \right)} = J_ - ^{\left( n \right)} - {J^{\left( {n - 1} \right)}} $
      8)Calculate the change in the performance evaluation function $ \delta {J^{\left( n \right)}} = J_ + ^{\left( n \right)} - J_ - ^{\left( n \right)} $
      9)Determine if $ {J^{\left( {n - 1} \right)}} < 0.6 $, if yes execute ①, otherwise execute ②
      $ {\gamma ^{\left( n \right)}} = \left| {{\gamma ^{\left( {n - 1} \right)}} - \left| {\delta {J^{\left( n \right)}}} \right| \times {J^{\left( {n - 1} \right)}}} \right| $
      $ {\gamma ^{\left( n \right)}} = {\gamma ^{\left( 0 \right)}} \times \left\{ {\exp \left[ { - \left( {{J^{\left( {n - 1} \right)}}} \right)} \right]} \right\} $
      10)Determine if $ {{\mathrm{sign}}} \left( {\delta J_ + ^{\left( n \right)}} \right) + {{\mathrm{sign}}} \left( {\delta J_ - ^{\left( n \right)}} \right) < 0 $, if yes execute ①, otherwise execute ②
      ① Update the control voltage $ {{\boldsymbol{u}}^{\left( n \right)}} = {{\boldsymbol{u}}^{\left( {n - 1} \right)}} + {\gamma ^{\left( n \right)}}\delta {{\boldsymbol{u}}^{\left( n \right)}}\delta {J^{\left( n \right)}} $
      ② Update the control voltage $ {{\boldsymbol{u}}^{\left( n \right)}} = {{\boldsymbol{u}}^{\left( {n - 1} \right)}} + C{\gamma ^{\left( n \right)}}\delta {{\boldsymbol{u}}^{\left( n \right)}}\dfrac{{J_ + ^{\left( n \right)} - J_ - ^{\left( n \right)}}}{{\left| {J_ + ^{\left( n \right)} - J_ - ^{\left( n \right)} + \varepsilon } \right|}} $
      11)Obtain the performance evaluation function $ {J^{\left( n \right)}} $, determine if the algorithm satisfies the end condition
      12) End For
    • Table 2. Parameter settings for each algorithm

      View table
      View in Article

      Table 2. Parameter settings for each algorithm

      AlgorithmParameter settings
      Staged SPGDγ(0) = 4 , C = 0.25 , |δu| = 1
      Adm SPGDγ(0) = 0.6 , ρ = 1 , p = 0.3 , |δu| = 1
      Piecewise SPGDγ= 4 , |δu(0)|= π/3
      Exp SPGDγ(0) = 4 , α = 0 , |δu| = 1
      SPGDγ= 2 , |δu| = 1
    • Table 3. Comparison of algorithm iteration times

      View table
      View in Article

      Table 3. Comparison of algorithm iteration times

      AlgorithmIteration numberAlgorithm iteration time/s
      Staged SPGD10004.97
      600.30
      SPGD10004.91
      950.47
    Tools

    Get Citation

    Copy Citation Text

    Wenhui ZHENG, Jiaqin QI, Wenjun JIANG, Guiyuan TAN, Qiqi HU, Huaien GAO, Jiazhen DOU, Jianglei DI, Yuwen QIN. Staged adaptive optimization of SPGD algorithm in laser coherent beam combining[J]. Infrared and Laser Engineering, 2024, 53(9): 20240257

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 8, 2024

    Accepted: --

    Published Online: Oct. 22, 2024

    The Author Email:

    DOI:10.3788/IRLA20240257

    Topics